Multi-Modal Detection Fusion on a Mobile UGV for Wide-Area, Long-Range Surveillance

Matt Brown, Keith Fieldhouse, E. Swears, Paul Tunison, Adam Romlein, A. Hoogs
{"title":"Multi-Modal Detection Fusion on a Mobile UGV for Wide-Area, Long-Range Surveillance","authors":"Matt Brown, Keith Fieldhouse, E. Swears, Paul Tunison, Adam Romlein, A. Hoogs","doi":"10.1109/WACV.2019.00207","DOIUrl":null,"url":null,"abstract":"We introduce a self-contained, mobile surveillance system designed to remotely detect and track people in real time, at long ranges, and over a wide field of view in cluttered urban and natural settings. The system is integrated with an unmanned ground vehicle, which hosts an array of four IR and four high-resolution RGB cameras, navigational sensors, and onboard processing computers. High-confidence, low-false-alarm-rate person tracks are produced by fusing motion detections and single-frame CNN person detections between co-registered RGB and IR video streams. Processing speeds are increased by using semantic scene segmentation and a tiered inference scheme to focus processing on the most salient regions of the 43° x 7.8° composite field of view. The system autonomously produces alerts of human presence and movement within the field of view, which are disseminated over a radio network and remotely viewed on a tablet computer. We present an ablation study quantifying the benefits that multi-sensor, multi-detector fusion brings to the problem of detecting people in challenging outdoor environments with shadows, occlusions, clutter, and variable weather conditions.","PeriodicalId":436637,"journal":{"name":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"202 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2019.00207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We introduce a self-contained, mobile surveillance system designed to remotely detect and track people in real time, at long ranges, and over a wide field of view in cluttered urban and natural settings. The system is integrated with an unmanned ground vehicle, which hosts an array of four IR and four high-resolution RGB cameras, navigational sensors, and onboard processing computers. High-confidence, low-false-alarm-rate person tracks are produced by fusing motion detections and single-frame CNN person detections between co-registered RGB and IR video streams. Processing speeds are increased by using semantic scene segmentation and a tiered inference scheme to focus processing on the most salient regions of the 43° x 7.8° composite field of view. The system autonomously produces alerts of human presence and movement within the field of view, which are disseminated over a radio network and remotely viewed on a tablet computer. We present an ablation study quantifying the benefits that multi-sensor, multi-detector fusion brings to the problem of detecting people in challenging outdoor environments with shadows, occlusions, clutter, and variable weather conditions.
面向广域、远程监视的移动UGV多模态检测融合
我们推出了一个独立的移动监控系统,旨在远程检测和实时跟踪人员,在混乱的城市和自然环境中,远距离和宽视野。该系统集成了一辆无人地面车辆,该车辆拥有4个红外和4个高分辨率RGB相机阵列、导航传感器和机载处理计算机。在RGB和IR视频流之间融合运动检测和单帧CNN人物检测,产生高置信度、低假警率的人物轨迹。通过使用语义场景分割和分层推理方案,将处理集中在43°x 7.8°复合视场的最显著区域,提高了处理速度。该系统在视野范围内自动发出人类存在和移动的警报,这些警报通过无线网络传播,并在平板电脑上远程观看。我们提出了一项消融研究,量化了多传感器、多探测器融合在具有阴影、遮挡、杂波和多变天气条件的室外环境中检测人员所带来的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信