Feature selection algorithms to reduce processing time in classification with SVMs

D. C. Toledo-Pérez, J. Rodríguez-Reséndíz, R. Gómez-Loenzo, J. Martínez-Trinidad, J. A. Carrasco-Ochoa
{"title":"Feature selection algorithms to reduce processing time in classification with SVMs","authors":"D. C. Toledo-Pérez, J. Rodríguez-Reséndíz, R. Gómez-Loenzo, J. Martínez-Trinidad, J. A. Carrasco-Ochoa","doi":"10.1109/CONIIN54356.2021.9634716","DOIUrl":null,"url":null,"abstract":"By applying feature selection algorithms, such as the Relief and the Sparse Multinomial Logistic Regression with Bayesian regularization (SBMLR) to a feature set, a smaller subset of features can be obtained. Considering only those selected for all or most of the test subjects; this shows that the Mean Absolute Value (MAV) of the signal provides less information than the rest of the features that were selected. The proposed method was applied to the classification of myoelectric signals of the transtibial section, using Support Vector Machines (SVM) as a classifier.","PeriodicalId":402828,"journal":{"name":"2021 XVII International Engineering Congress (CONIIN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 XVII International Engineering Congress (CONIIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONIIN54356.2021.9634716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

By applying feature selection algorithms, such as the Relief and the Sparse Multinomial Logistic Regression with Bayesian regularization (SBMLR) to a feature set, a smaller subset of features can be obtained. Considering only those selected for all or most of the test subjects; this shows that the Mean Absolute Value (MAV) of the signal provides less information than the rest of the features that were selected. The proposed method was applied to the classification of myoelectric signals of the transtibial section, using Support Vector Machines (SVM) as a classifier.
减少svm分类处理时间的特征选择算法
将特征选择算法(如Relief和稀疏多项式逻辑回归与贝叶斯正则化(SBMLR))应用于特征集,可以获得更小的特征子集。只考虑全部或大部分考试科目的选择;这表明信号的平均绝对值(MAV)提供的信息比选择的其他特征少。采用支持向量机(SVM)作为分类器,将该方法应用于胫骨肌电信号的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信