Achieving Predictable Multicore Execution of Automotive Applications Using the LET Paradigm

Alessandro Biondi, M. Natale
{"title":"Achieving Predictable Multicore Execution of Automotive Applications Using the LET Paradigm","authors":"Alessandro Biondi, M. Natale","doi":"10.1109/RTAS.2018.00032","DOIUrl":null,"url":null,"abstract":"Next generation automotive applications require support for safe, predictable, and deterministic execution. The Logical Execution Time (LET) model has been introduced to improve the predictability and correctness of time-critical applications. The advent of multicore architectures, together with the need to ensure time predictability despite the complex memory hierarchy and the hardware resources shared by the cores, is an additional motivation for the use of the LET paradigm in conjunction with a suitable scheduling and memory access model. In this paper, we show how an implementation of the LET model on actual multicore platforms for automotive systems brings the potential to improve time determinism at the price of a modicum run-time overhead. Multiple implementation options are discussed using the automotive AUTOSAR model and operating system standard, and a realistic application defined by Bosch for the 2017 WATERS challenge. Experimental data of executions on the Infineon Aurix platform show the feasibility of the proposed approach. The paper also provides a discussion on further implementation optimizations and other issues related to the general problem of memory-aware analysis of automotive applications on multicores.","PeriodicalId":164981,"journal":{"name":"2018 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTAS.2018.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

Next generation automotive applications require support for safe, predictable, and deterministic execution. The Logical Execution Time (LET) model has been introduced to improve the predictability and correctness of time-critical applications. The advent of multicore architectures, together with the need to ensure time predictability despite the complex memory hierarchy and the hardware resources shared by the cores, is an additional motivation for the use of the LET paradigm in conjunction with a suitable scheduling and memory access model. In this paper, we show how an implementation of the LET model on actual multicore platforms for automotive systems brings the potential to improve time determinism at the price of a modicum run-time overhead. Multiple implementation options are discussed using the automotive AUTOSAR model and operating system standard, and a realistic application defined by Bosch for the 2017 WATERS challenge. Experimental data of executions on the Infineon Aurix platform show the feasibility of the proposed approach. The paper also provides a discussion on further implementation optimizations and other issues related to the general problem of memory-aware analysis of automotive applications on multicores.
使用LET范式实现可预测的汽车应用程序多核执行
下一代汽车应用程序需要支持安全、可预测和确定的执行。引入逻辑执行时间(LET)模型是为了提高时间关键型应用程序的可预测性和正确性。多核架构的出现,以及在复杂的内存层次结构和内核共享的硬件资源的情况下确保时间可预测性的需要,是将LET范式与合适的调度和内存访问模型结合使用的另一个动机。在本文中,我们展示了LET模型在汽车系统的实际多核平台上的实现是如何以少量运行时开销为代价提高时间确定性的。采用汽车AUTOSAR模型和操作系统标准,以及博世为2017年WATERS挑战赛定义的实际应用,讨论了多种实施方案。在英飞凌Aurix平台上执行的实验数据表明了所提出方法的可行性。本文还讨论了进一步的实现优化以及与多核汽车应用的内存感知分析相关的其他问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信