Yung-Yu Chuang, Douglas E. Zongker, J. Hindorff, B. Curless, D. Salesin, R. Szeliski
{"title":"Environment matting extensions: towards higher accuracy and real-time capture","authors":"Yung-Yu Chuang, Douglas E. Zongker, J. Hindorff, B. Curless, D. Salesin, R. Szeliski","doi":"10.1145/344779.344844","DOIUrl":null,"url":null,"abstract":"Environment matting is a generalization of traditional bluescreen matting. By photographing an object in front of a sequence of structured light backdrops, a set of approximate light-transport paths through the object can be computed. The original environment matting research chose a middle ground—using a moderate number of photographs to produce results that were reasonably accurate for many objects. In this work, we extend the technique in two opposite directions: recovering a more accurate model at the expense of using additional structured light backdrops, and obtaining a simplified matte using just a single backdrop. The first extension allows for the capture of complex and subtle interactions of light with objects, while the second allows for video capture of colorless objects in motion.","PeriodicalId":269415,"journal":{"name":"Proceedings of the 27th annual conference on Computer graphics and interactive techniques","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"155","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th annual conference on Computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/344779.344844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 155
Abstract
Environment matting is a generalization of traditional bluescreen matting. By photographing an object in front of a sequence of structured light backdrops, a set of approximate light-transport paths through the object can be computed. The original environment matting research chose a middle ground—using a moderate number of photographs to produce results that were reasonably accurate for many objects. In this work, we extend the technique in two opposite directions: recovering a more accurate model at the expense of using additional structured light backdrops, and obtaining a simplified matte using just a single backdrop. The first extension allows for the capture of complex and subtle interactions of light with objects, while the second allows for video capture of colorless objects in motion.