An improvement of translation quality with adding key-words in parallel corpus

Liang Tian, F. Wong, S. Chao
{"title":"An improvement of translation quality with adding key-words in parallel corpus","authors":"Liang Tian, F. Wong, S. Chao","doi":"10.1109/ICMLC.2010.5580888","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new approach to improve the translation quality by adding the Key-Words of a sentence to the parallel corpus. The main idea of the approach is to find the key-words of sentences that cannot be properly translated by the model, and then put it or them in the training corpus in a separated line as a sentence. During our experiment, we use two statistical machine translation (SMT) systems, word-based SMT (ISI-rewrite) and phrase-based SMT (Moses), and a small parallel corpus (4,000 sentences) to check our assumption. To our glad, we get a better BLEU score than the original parallel text. It can improve about 6% in word-based SMT (isi-rewrite) and 4% in phrased-based SMT (Moses). At last we build a 120,000 English-Chinese parallel corpus in this way.","PeriodicalId":126080,"journal":{"name":"2010 International Conference on Machine Learning and Cybernetics","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.5580888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we propose a new approach to improve the translation quality by adding the Key-Words of a sentence to the parallel corpus. The main idea of the approach is to find the key-words of sentences that cannot be properly translated by the model, and then put it or them in the training corpus in a separated line as a sentence. During our experiment, we use two statistical machine translation (SMT) systems, word-based SMT (ISI-rewrite) and phrase-based SMT (Moses), and a small parallel corpus (4,000 sentences) to check our assumption. To our glad, we get a better BLEU score than the original parallel text. It can improve about 6% in word-based SMT (isi-rewrite) and 4% in phrased-based SMT (Moses). At last we build a 120,000 English-Chinese parallel corpus in this way.
在平行语料库中添加关键词提高翻译质量
在本文中,我们提出了一种新的方法,即在平行语料库中添加句子的关键词来提高翻译质量。该方法的主要思想是找到不能被模型正确翻译的句子的关键词,然后将其或其作为句子以单独的行放入训练语料库中。在我们的实验中,我们使用了两个统计机器翻译(SMT)系统,基于单词的SMT (ISI-rewrite)和基于短语的SMT (Moses),以及一个小的平行语料库(4000个句子)来检验我们的假设。令我们高兴的是,我们得到了比原来的平行文本更好的BLEU分数。它可以在基于单词的SMT (isi-rewrite)中提高约6%,在基于短语的SMT (Moses)中提高约4%。最后我们用这种方法构建了一个12万的英汉平行语料库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信