Crimes Prediction Using Spatio-Temporal Data and Kernel Density Estimation

{"title":"Crimes Prediction Using Spatio-Temporal Data and Kernel Density Estimation","authors":"","doi":"10.1109/APCoRISE46197.2019.9318972","DOIUrl":null,"url":null,"abstract":"This study presents a method to predict crimes by using multiple data sources i.e. spatio-temporal crime dataset and zoning district dataset. The contribution of this study lies in the use of Kernel Density Estimation (KDE) and zoning district dataset to address the issue of crimes prediction. The experiments were performed by training Gradient Boosting Machine (GBM) as a classifier on some subset of features. The best result was achieved by using all features including KDE with smoothing and zoning district feature, namely with multiclass logarithmic loss 2.356104 on validation set and 2.35443 on test set.","PeriodicalId":250648,"journal":{"name":"2019 Asia Pacific Conference on Research in Industrial and Systems Engineering (APCoRISE)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Asia Pacific Conference on Research in Industrial and Systems Engineering (APCoRISE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCoRISE46197.2019.9318972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a method to predict crimes by using multiple data sources i.e. spatio-temporal crime dataset and zoning district dataset. The contribution of this study lies in the use of Kernel Density Estimation (KDE) and zoning district dataset to address the issue of crimes prediction. The experiments were performed by training Gradient Boosting Machine (GBM) as a classifier on some subset of features. The best result was achieved by using all features including KDE with smoothing and zoning district feature, namely with multiclass logarithmic loss 2.356104 on validation set and 2.35443 on test set.
基于时空数据和核密度估计的犯罪预测
本文提出了一种基于时空犯罪数据集和分区数据集的多数据源犯罪预测方法。本研究的贡献在于使用核密度估计(KDE)和分区数据集来解决犯罪预测问题。实验通过训练梯度增强机(GBM)作为分类器对一些特征子集进行分类。将包括KDE在内的所有特征结合平滑和分区特征,即验证集的多类对数损失为2.356104,测试集的多类对数损失为2.35443,得到了最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信