Mining Weighted Frequent Itemsets Using Window Sliding over Data Streams

Younghee Kim, Wonyoung Kim, Joonsuk Ryu, Ungmo Kim
{"title":"Mining Weighted Frequent Itemsets Using Window Sliding over Data Streams","authors":"Younghee Kim, Wonyoung Kim, Joonsuk Ryu, Ungmo Kim","doi":"10.1109/ICCIT.2009.20","DOIUrl":null,"url":null,"abstract":"In this paper, we considers the problem of mining with weighted support over a data stream sliding window using limited memory space. The continuous characteristic of streaming data necessitates the use of algorithms that require only one scan over the stream for knowledge discovery. This paper focuses on research issues concerning mining frequent itemsets in data streams and we suggests an efficient algorithm WSFI-Mine to mine all frequent itemsets. Our experiment show that our algorithm not only achieved effectively consumes less memory, but also runs significantly faster than THUI-mine.","PeriodicalId":112416,"journal":{"name":"2009 Fourth International Conference on Computer Sciences and Convergence Information Technology","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fourth International Conference on Computer Sciences and Convergence Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT.2009.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we considers the problem of mining with weighted support over a data stream sliding window using limited memory space. The continuous characteristic of streaming data necessitates the use of algorithms that require only one scan over the stream for knowledge discovery. This paper focuses on research issues concerning mining frequent itemsets in data streams and we suggests an efficient algorithm WSFI-Mine to mine all frequent itemsets. Our experiment show that our algorithm not only achieved effectively consumes less memory, but also runs significantly faster than THUI-mine.
使用数据流窗口滑动挖掘加权频繁项集
在本文中,我们考虑了在有限的内存空间下对数据流滑动窗口进行加权支持挖掘的问题。流数据的连续特性要求使用只需对流进行一次扫描即可进行知识发现的算法。本文重点研究了数据流中频繁项集的挖掘问题,提出了一种高效的WSFI-Mine算法来挖掘所有频繁项集。我们的实验表明,我们的算法不仅有效地实现了更少的内存消耗,而且运行速度明显快于THUI-mine。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信