{"title":"Development of a Low-Cost Relay Prototype for Real-Time Power Protection Functions","authors":"Pablo Rodrigues Lopes, Rui Bertho Junior","doi":"10.21528/lnlm-vol21-no1-art7","DOIUrl":null,"url":null,"abstract":"This paper presents a Raspberry Pi 3B+ based low-cost universal relay able to run power protection functions in real-time. The configurations necessary for this single-board computer to be able to provide real-time response are shown, as for latency tests to verify its response time. An experimental circuit was built to send three-phase fault signals from a Relay tester to the low-cost relay, in order to evaluate its response time to clear faults in comparison to a commercial relay. A neural networks algorithm was developed and executed in real-time by the proposed low-cost relay, which is able to differentiate three-phase faults from transient signals created from large load variations. The results show that the low-cost relay is capable of running simple and complex protection functions within a pre-defined runtime and acceptable precision, compared to a commercial protection relay. However, the sampling frequency the low-cost relay is able to handle is limited. The results have also shown that the low-cost relay meet the requirements for a soft real-time system, which is not ideal for practical power protection systems that require hard real-time systems.","PeriodicalId":386768,"journal":{"name":"Learning and Nonlinear Models","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning and Nonlinear Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21528/lnlm-vol21-no1-art7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents a Raspberry Pi 3B+ based low-cost universal relay able to run power protection functions in real-time. The configurations necessary for this single-board computer to be able to provide real-time response are shown, as for latency tests to verify its response time. An experimental circuit was built to send three-phase fault signals from a Relay tester to the low-cost relay, in order to evaluate its response time to clear faults in comparison to a commercial relay. A neural networks algorithm was developed and executed in real-time by the proposed low-cost relay, which is able to differentiate three-phase faults from transient signals created from large load variations. The results show that the low-cost relay is capable of running simple and complex protection functions within a pre-defined runtime and acceptable precision, compared to a commercial protection relay. However, the sampling frequency the low-cost relay is able to handle is limited. The results have also shown that the low-cost relay meet the requirements for a soft real-time system, which is not ideal for practical power protection systems that require hard real-time systems.