Entity Level QA Pairs Dataset for Sentiment Analysis

Aritra Kumar Lahiri, Qinmin Hu
{"title":"Entity Level QA Pairs Dataset for Sentiment Analysis","authors":"Aritra Kumar Lahiri, Qinmin Hu","doi":"10.1109/WI-IAT55865.2022.00046","DOIUrl":null,"url":null,"abstract":"In this paper, we present a named entity based sentiment analysis dataset OTTQA V1.0 that aims to detect primary TV series character opinions along with their sentiment polarities from the tweets generated from answer span extraction. The dataset, named OTTQA V1.0, contains 5237 unique question answer pairs from \"Game Of Thrones\" TV series . Along with the dataset, supportive tweets are extracted according to their relevancy with answer span keyword which is used to gauge opinion changes of OTT series characters over a given time period. The primary goal of proposing this sentiment analysis task is to provide the users with an utility dataset that calculates the sentiments of primary TV series characters from the tweets.","PeriodicalId":345445,"journal":{"name":"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)","volume":"88 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT55865.2022.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a named entity based sentiment analysis dataset OTTQA V1.0 that aims to detect primary TV series character opinions along with their sentiment polarities from the tweets generated from answer span extraction. The dataset, named OTTQA V1.0, contains 5237 unique question answer pairs from "Game Of Thrones" TV series . Along with the dataset, supportive tweets are extracted according to their relevancy with answer span keyword which is used to gauge opinion changes of OTT series characters over a given time period. The primary goal of proposing this sentiment analysis task is to provide the users with an utility dataset that calculates the sentiments of primary TV series characters from the tweets.
情感分析的实体级QA对数据集
在本文中,我们提出了一个基于命名实体的情感分析数据集OTTQA V1.0,旨在从答案跨度提取生成的推文中检测主要电视剧角色的观点及其情感极性。这个名为OTTQA V1.0的数据集包含5237个来自《权力的游戏》电视剧的唯一答案对。与数据集一起,根据其与答案跨度关键字的相关性提取支持性推文,该关键字用于衡量给定时间段内OTT系列角色的意见变化。提出这个情感分析任务的主要目标是为用户提供一个实用数据集,该数据集可以从推文中计算主要电视剧角色的情感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信