Topological logarithmic structures

J. Rognes
{"title":"Topological logarithmic structures","authors":"J. Rognes","doi":"10.2140/GTM.2009.16.401","DOIUrl":null,"url":null,"abstract":"A logarithmic structure on a commutative ring A is a commutative monoid M with a homomorphism to the underlying multiplicative monoid of A. This determines a localization AŒM  of A. In algebro-geometric terms, we might say that M cuts out a divisor D from Spec.A/, and AŒM  is the ring of regular functions on the open complement. In general the logarithmic structure carries more information than the localization. For example, the Kahler differentials of A form an A–module  A , generated by differentials of the form da, which are globally defined over Spec.A/. The Kahler differentials of the localization form the AŒM –module  AŒM  , which also contains differentials of the form m da, having poles of arbitrary degree along D . The logarithmic structure specifies an intermediate A–module of logarithmic Kahler differentials,  .A;M / , generated by differentials of the form da and d log mDm dm, having only poles of simple, or logarithmic, type along D . The logarithmic structure is therefore a more moderate way of specifying a localization than the actual localized ring. See Kato [35] and Illusie [34] for introductions to logarithmic algebraic geometry.","PeriodicalId":115248,"journal":{"name":"Geometry and Topology Monographs","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry and Topology Monographs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/GTM.2009.16.401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

A logarithmic structure on a commutative ring A is a commutative monoid M with a homomorphism to the underlying multiplicative monoid of A. This determines a localization AŒM  of A. In algebro-geometric terms, we might say that M cuts out a divisor D from Spec.A/, and AŒM  is the ring of regular functions on the open complement. In general the logarithmic structure carries more information than the localization. For example, the Kahler differentials of A form an A–module  A , generated by differentials of the form da, which are globally defined over Spec.A/. The Kahler differentials of the localization form the AŒM –module  AŒM  , which also contains differentials of the form m da, having poles of arbitrary degree along D . The logarithmic structure specifies an intermediate A–module of logarithmic Kahler differentials,  .A;M / , generated by differentials of the form da and d log mDm dm, having only poles of simple, or logarithmic, type along D . The logarithmic structure is therefore a more moderate way of specifying a localization than the actual localized ring. See Kato [35] and Illusie [34] for introductions to logarithmic algebraic geometry.
拓扑对数结构
交换环A上的一个对数结构是一个交换单群M,它与下面的A的乘法单群同态。这决定了A的一个定位AŒM;;在代数几何方面,我们可以说M从规范A/中切掉了一个除数D,并且AŒM;;;一般来说,对数结构比定位结构携带更多的信息。例如,A的Kahler微分形成了一个A模块,它是由形式da的微分生成的,它是在Spec.A/上全局定义的。局域化的Kahler微分形成AŒM -模块AŒM -模块,它也包含形式为m da的微分,沿D方向具有任意度数的极点。对数结构指定了对数Kahler微分的中间a模块,a;M /,由形式为da和d log mDm dm的微分生成,只有沿d的简单或对数类型的极点。因此,对数结构是一种比实际的局部化环更温和的指定局部化的方式。有关对数代数几何的介绍,请参阅Kato[35]和Illusie[34]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信