Tracking with spherical-estimate-conditioned debiased converted measurements

John N. Spitzmiller, R. Adhami
{"title":"Tracking with spherical-estimate-conditioned debiased converted measurements","authors":"John N. Spitzmiller, R. Adhami","doi":"10.1109/RADAR.2010.5494637","DOIUrl":null,"url":null,"abstract":"This paper presents a new algorithm for the 3-D converted-measurement Kalman filter (CMKF) [1]-[3]. At each index, the new algorithm chooses the more accurate of (1) the spherical measurement provided by a sensor and (2) a spherical prediction computed from the CMKF's prediction information. The new algorithm next debiases the raw converted measurement with the raw converted measurement's error bias conditioned on the chosen spherical estimate. The new algorithm then computes the debiased converted measurement's error covariance conditioned on the chosen spherical target-position estimate, thus allowing the standard Kalman-filter algorithm's application. The paper gives closed-form solutions for the measurement-conditioned bias and covariance. The paper also describes a novel method, based on the unscented transformation [4], for approximating the prediction-conditioned bias and covariance. Simulation results show the new algorithm's improved tracking performance and statistical credibility over those of the 3-D modified unbiased CMKF.","PeriodicalId":125591,"journal":{"name":"2010 IEEE Radar Conference","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2010.5494637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new algorithm for the 3-D converted-measurement Kalman filter (CMKF) [1]-[3]. At each index, the new algorithm chooses the more accurate of (1) the spherical measurement provided by a sensor and (2) a spherical prediction computed from the CMKF's prediction information. The new algorithm next debiases the raw converted measurement with the raw converted measurement's error bias conditioned on the chosen spherical estimate. The new algorithm then computes the debiased converted measurement's error covariance conditioned on the chosen spherical target-position estimate, thus allowing the standard Kalman-filter algorithm's application. The paper gives closed-form solutions for the measurement-conditioned bias and covariance. The paper also describes a novel method, based on the unscented transformation [4], for approximating the prediction-conditioned bias and covariance. Simulation results show the new algorithm's improved tracking performance and statistical credibility over those of the 3-D modified unbiased CMKF.
用球面估计条件下的去偏转换测量跟踪
本文提出了一种新的三维转换测量卡尔曼滤波(CMKF)算法[1]-[3]。在每个指标上,新算法选择(1)传感器提供的球面测量值和(2)CMKF预测信息计算的球面预测值更准确。新算法将原始转换测量的误差偏差以所选的球面估计值为条件进行消除。然后根据所选球面目标位置估计计算去偏转换测量的误差协方差,从而使标准卡尔曼滤波算法得以应用。本文给出了测量条件偏差和协方差的封闭解。本文还描述了一种基于unscented变换[4]的新方法,用于逼近预测条件偏差和协方差。仿真结果表明,该算法比三维修正无偏CMKF算法具有更好的跟踪性能和统计可信度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信