Thwarting Fake OSN Accounts by Predicting their Victims

Yazan Boshmaf, M. Ripeanu, K. Beznosov, E. Santos-Neto
{"title":"Thwarting Fake OSN Accounts by Predicting their Victims","authors":"Yazan Boshmaf, M. Ripeanu, K. Beznosov, E. Santos-Neto","doi":"10.1145/2808769.2808772","DOIUrl":null,"url":null,"abstract":"Traditional defense mechanisms for fighting against automated fake accounts in online social networks are victim-agnostic. Even though victims of fake accounts play an important role in the viability of subsequent attacks, there is no work on utilizing this insight to improve the status quo. In this position paper, we take the first step and propose to incorporate predictions about victims of unknown fakes into the workflows of existing defense mechanisms. In particular, we investigated how such an integration could lead to more robust fake account defense mechanisms. We also used real-world datasets from Facebook and Tuenti to evaluate the feasibility of predicting victims of fake accounts using supervised machine learning.","PeriodicalId":426614,"journal":{"name":"Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2808769.2808772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Traditional defense mechanisms for fighting against automated fake accounts in online social networks are victim-agnostic. Even though victims of fake accounts play an important role in the viability of subsequent attacks, there is no work on utilizing this insight to improve the status quo. In this position paper, we take the first step and propose to incorporate predictions about victims of unknown fakes into the workflows of existing defense mechanisms. In particular, we investigated how such an integration could lead to more robust fake account defense mechanisms. We also used real-world datasets from Facebook and Tuenti to evaluate the feasibility of predicting victims of fake accounts using supervised machine learning.
通过预测受害者来阻止虚假的OSN账户
打击在线社交网络中自动虚假账户的传统防御机制是与受害者无关的。尽管虚假账户的受害者在后续攻击的可行性中发挥了重要作用,但目前还没有利用这种洞察力来改善现状的工作。在本立场文件中,我们迈出了第一步,并建议将对未知虚假受害者的预测纳入现有防御机制的工作流程。特别是,我们调查了这样的集成如何导致更强大的虚假账户防御机制。我们还使用来自Facebook和Tuenti的真实数据集来评估使用监督机器学习预测虚假账户受害者的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信