Active optics for a formation flying synthetic aperture telescope

N. Miyamura, Ryo Suzumoto, S. Ikari, Shinichi Nakasuka
{"title":"Active optics for a formation flying synthetic aperture telescope","authors":"N. Miyamura, Ryo Suzumoto, S. Ikari, Shinichi Nakasuka","doi":"10.1117/12.2680564","DOIUrl":null,"url":null,"abstract":"In recent years, small satellites have been utilized for remote sensing from Low Earth Orbit (LEO) with a spatial resolution of several meters. However, improving the temporal resolution for LEO remote sensing is challenging because of the short orbital period. Observation techniques using remote sensing from a Geostationary Orbit (GEO), or its nearby orbit are becoming increasingly crucial, particularly in disaster monitoring, due to their ability to provide high-temporal resolution. To improve both temporal and spatial resolutions from GEO, it is necessary to use an optical system with a diameter of several meters due to the diffraction limit. We propose the Formation Flying Synthetic Aperture Telescope (FFSAT). One of the key issues is realizing the optical system with an accuracy of less than 1/10 of the observation wavelength to get synthesized images. We propose a method for estimating and correcting misalignment and optical aberrations using adaptive optics.","PeriodicalId":330744,"journal":{"name":"Sensors, Systems, and Next-Generation Satellites XXVII","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors, Systems, and Next-Generation Satellites XXVII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2680564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, small satellites have been utilized for remote sensing from Low Earth Orbit (LEO) with a spatial resolution of several meters. However, improving the temporal resolution for LEO remote sensing is challenging because of the short orbital period. Observation techniques using remote sensing from a Geostationary Orbit (GEO), or its nearby orbit are becoming increasingly crucial, particularly in disaster monitoring, due to their ability to provide high-temporal resolution. To improve both temporal and spatial resolutions from GEO, it is necessary to use an optical system with a diameter of several meters due to the diffraction limit. We propose the Formation Flying Synthetic Aperture Telescope (FFSAT). One of the key issues is realizing the optical system with an accuracy of less than 1/10 of the observation wavelength to get synthesized images. We propose a method for estimating and correcting misalignment and optical aberrations using adaptive optics.
编队飞行合成孔径望远镜的主动光学
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信