Muhammad Rizwan Khan, Wala Saadeh, Muhammad Awais Bin Altaf
{"title":"Wearable Low-power Closed-loop System for Tremor Detection and Stimulation using Electromyography (EMG)","authors":"Muhammad Rizwan Khan, Wala Saadeh, Muhammad Awais Bin Altaf","doi":"10.1109/icecs53924.2021.9665556","DOIUrl":null,"url":null,"abstract":"A wearable EMG based tremor detection and suppression system is presented. This work proposes a novel design enabling low-power consumption, wearability, lower computational cost and lower latency. An analog front end (AFE) is designed containing cascaded filters and a Driven-Right-Leg (DRL) feedback for high-level noise removal of up to 1V. A CC1352R microcontroller with an integrated BLE along with RTOS is utilized to achieve low-power processing. A user-friendly interface is provided using Android application (AP) that allows immediate sharing of data to caretakers or database. A 128-point FFT is employed with a simple implementation in terms of computation and a variable-voltage skin-impedance based muscle stimulation is being used. The system is operable on coin cell batteries for more than 3 weeks. The overall average power consumption of the system is 4.8mW with average current 1.35mA and a detection latency of <0.2s is achieved.","PeriodicalId":448558,"journal":{"name":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","volume":"85 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icecs53924.2021.9665556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A wearable EMG based tremor detection and suppression system is presented. This work proposes a novel design enabling low-power consumption, wearability, lower computational cost and lower latency. An analog front end (AFE) is designed containing cascaded filters and a Driven-Right-Leg (DRL) feedback for high-level noise removal of up to 1V. A CC1352R microcontroller with an integrated BLE along with RTOS is utilized to achieve low-power processing. A user-friendly interface is provided using Android application (AP) that allows immediate sharing of data to caretakers or database. A 128-point FFT is employed with a simple implementation in terms of computation and a variable-voltage skin-impedance based muscle stimulation is being used. The system is operable on coin cell batteries for more than 3 weeks. The overall average power consumption of the system is 4.8mW with average current 1.35mA and a detection latency of <0.2s is achieved.