Autonomous underwater simultaneous localisation and map building

Stefan B. Williams, P. Newman, G. Dissanayake, H. Durrant-Whyte
{"title":"Autonomous underwater simultaneous localisation and map building","authors":"Stefan B. Williams, P. Newman, G. Dissanayake, H. Durrant-Whyte","doi":"10.1109/ROBOT.2000.844855","DOIUrl":null,"url":null,"abstract":"We present results of the application of a simultaneous localisation and map building (SLAM) algorithm to estimate the motion of a submersible vehicle. Scans obtained from an on-board sonar are processed to extract stable point features in the environment. These point features are then used to build up a map of the environment while simultaneously providing estimates of the vehicle location. Results are shown from deployment in a swimming pool at the University of Sydney as well as from field trials in a natural environment along Sydney's coast. This work represents the first instance of a deployable underwater implementation of the SLAM algorithm.","PeriodicalId":286422,"journal":{"name":"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"152","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2000.844855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 152

Abstract

We present results of the application of a simultaneous localisation and map building (SLAM) algorithm to estimate the motion of a submersible vehicle. Scans obtained from an on-board sonar are processed to extract stable point features in the environment. These point features are then used to build up a map of the environment while simultaneously providing estimates of the vehicle location. Results are shown from deployment in a swimming pool at the University of Sydney as well as from field trials in a natural environment along Sydney's coast. This work represents the first instance of a deployable underwater implementation of the SLAM algorithm.
自主水下同步定位和地图建设
我们介绍了同时定位和地图构建(SLAM)算法用于估计潜水器运动的应用结果。从机载声纳获得的扫描被处理以提取环境中的稳定点特征。这些点的特征然后被用来建立一个环境地图,同时提供车辆位置的估计。结果显示了在悉尼大学游泳池的部署,以及在悉尼海岸自然环境中的现场试验。这项工作代表了SLAM算法的可部署水下实现的第一个实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信