A predictive data-driven model for traffic-jams forecasting in smart santader city-scale testbed

J. Treboux, A. Jara, Luc Dufour, D. Genoud
{"title":"A predictive data-driven model for traffic-jams forecasting in smart santader city-scale testbed","authors":"J. Treboux, A. Jara, Luc Dufour, D. Genoud","doi":"10.1109/WCNCW.2015.7122530","DOIUrl":null,"url":null,"abstract":"In this paper, a model for traffic jam prediction using data about traffic, weather and noise is presented. It is based on data coming from a Smart City in Spain called Santander. The project in this city is called ”Smart Santander” and provides a platform for large-scale experiment based on realtime data. This paper demonstrates the possibility of predicting traffic jams and is a basis to integrate in projects to improve the quality of services. In this work, a cross validation method to ratify our training set is proposed. Data intelligence analysis techniques are used for the prediction with an implementation of Neural Network and Decision Tree algorithms. These algorithms are using different parameters coming from Smart Santander and other external sources. Furthermore, a cross validation process is also integrated to improve the final result. The traffic jam prediction for the next 15 minutes reached an accuracy of 99.95%.","PeriodicalId":123586,"journal":{"name":"2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)","volume":"34 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNCW.2015.7122530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, a model for traffic jam prediction using data about traffic, weather and noise is presented. It is based on data coming from a Smart City in Spain called Santander. The project in this city is called ”Smart Santander” and provides a platform for large-scale experiment based on realtime data. This paper demonstrates the possibility of predicting traffic jams and is a basis to integrate in projects to improve the quality of services. In this work, a cross validation method to ratify our training set is proposed. Data intelligence analysis techniques are used for the prediction with an implementation of Neural Network and Decision Tree algorithms. These algorithms are using different parameters coming from Smart Santander and other external sources. Furthermore, a cross validation process is also integrated to improve the final result. The traffic jam prediction for the next 15 minutes reached an accuracy of 99.95%.
基于数据驱动的智能santander城市规模交通拥堵预测模型
本文提出了一种基于交通、天气和噪声数据的交通堵塞预测模型。它基于来自西班牙桑坦德智慧城市的数据。这个城市的项目被称为“智能桑坦德”,它提供了一个基于实时数据的大规模实验平台。本文论证了预测交通堵塞的可能性,并为整合到项目中以提高服务质量提供了依据。在这项工作中,提出了一种交叉验证方法来批准我们的训练集。通过神经网络和决策树算法的实现,使用数据智能分析技术进行预测。这些算法使用来自Smart Santander和其他外部资源的不同参数。此外,还集成了交叉验证过程以改进最终结果。对未来15分钟交通拥堵的预测准确率达到99.95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信