{"title":"Machine Learning Systems are Stuck in a Rut","authors":"P. Barham, M. Isard","doi":"10.1145/3317550.3321441","DOIUrl":null,"url":null,"abstract":"In this paper we argue that systems for numerical computing are stuck in a local basin of performance and programmability. Systems researchers are doing an excellent job improving the performance of 5-year-old benchmarks, but gradually making it harder to explore innovative machine learning research ideas. We explain how the evolution of hardware accelerators favors compiler back ends that hyper-optimize large monolithic kernels, show how this reliance on high-performance but inflexible kernels reinforces the dominant style of programming model, and argue these programming abstractions lack expressiveness, maintainability, and modularity; all of which hinders research progress. We conclude by noting promising directions in the field, and advocate steps to advance progress towards high-performance general purpose numerical computing systems on modern accelerators.","PeriodicalId":224944,"journal":{"name":"Proceedings of the Workshop on Hot Topics in Operating Systems","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Hot Topics in Operating Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3317550.3321441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56
Abstract
In this paper we argue that systems for numerical computing are stuck in a local basin of performance and programmability. Systems researchers are doing an excellent job improving the performance of 5-year-old benchmarks, but gradually making it harder to explore innovative machine learning research ideas. We explain how the evolution of hardware accelerators favors compiler back ends that hyper-optimize large monolithic kernels, show how this reliance on high-performance but inflexible kernels reinforces the dominant style of programming model, and argue these programming abstractions lack expressiveness, maintainability, and modularity; all of which hinders research progress. We conclude by noting promising directions in the field, and advocate steps to advance progress towards high-performance general purpose numerical computing systems on modern accelerators.