{"title":"Complexidade Parametrizada de Cliques e Conjuntos Independentes em Grafos Prismas Complementares","authors":"P. Camargo, A. Carneiro, Uéverton S. Santos","doi":"10.5753/etc.2018.3166","DOIUrl":null,"url":null,"abstract":"The complementary prism GG¯ arises from the disjoint union of the graph G and its complement G¯ by adding the edges of a perfect matching joining pairs of corresponding vertices of G and G¯. The classical problems of graph theory, clique and independent set were proved NP-complete when the input graph is a complemantary prism. In this work, we study the complexity of both problems in complementary prisms graphs from the parameterized complexity point of view. First, we prove that these problems have a kernel and therefore are Fixed-Parameter Tractable (FPT). Then, we show that both problems do not admit polynomial kernel.","PeriodicalId":315906,"journal":{"name":"Anais do Encontro de Teoria da Computação (ETC)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Encontro de Teoria da Computação (ETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/etc.2018.3166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The complementary prism GG¯ arises from the disjoint union of the graph G and its complement G¯ by adding the edges of a perfect matching joining pairs of corresponding vertices of G and G¯. The classical problems of graph theory, clique and independent set were proved NP-complete when the input graph is a complemantary prism. In this work, we study the complexity of both problems in complementary prisms graphs from the parameterized complexity point of view. First, we prove that these problems have a kernel and therefore are Fixed-Parameter Tractable (FPT). Then, we show that both problems do not admit polynomial kernel.