Complexidade Parametrizada de Cliques e Conjuntos Independentes em Grafos Prismas Complementares

P. Camargo, A. Carneiro, Uéverton S. Santos
{"title":"Complexidade Parametrizada de Cliques e Conjuntos Independentes em Grafos Prismas Complementares","authors":"P. Camargo, A. Carneiro, Uéverton S. Santos","doi":"10.5753/etc.2018.3166","DOIUrl":null,"url":null,"abstract":"The complementary prism GG¯ arises from the disjoint union of the graph G and its complement G¯ by adding the edges of a perfect matching joining pairs of corresponding vertices of G and G¯. The classical problems of graph theory, clique and independent set were proved NP-complete when the input graph is a complemantary prism. In this work, we study the complexity of both problems in complementary prisms graphs from the parameterized complexity point of view. First, we prove that these problems have a kernel and therefore are Fixed-Parameter Tractable (FPT). Then, we show that both problems do not admit polynomial kernel.","PeriodicalId":315906,"journal":{"name":"Anais do Encontro de Teoria da Computação (ETC)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Encontro de Teoria da Computação (ETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/etc.2018.3166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The complementary prism GG¯ arises from the disjoint union of the graph G and its complement G¯ by adding the edges of a perfect matching joining pairs of corresponding vertices of G and G¯. The classical problems of graph theory, clique and independent set were proved NP-complete when the input graph is a complemantary prism. In this work, we study the complexity of both problems in complementary prisms graphs from the parameterized complexity point of view. First, we prove that these problems have a kernel and therefore are Fixed-Parameter Tractable (FPT). Then, we show that both problems do not admit polynomial kernel.
互补棱镜图中团和独立集的参数化复杂性
互补棱镜GG¯是由图G与其互补棱镜G¯的不相交并而产生的,它是由图G和G¯的对应顶点对的完美匹配连接而成的。证明了图论、团和独立集等经典问题在输入图为互补棱镜时的np完全性。本文从参数化复杂度的角度研究了互补棱镜图中这两个问题的复杂性。首先,我们证明了这些问题有一个核,因此是固定参数可处理的(FPT)。然后,我们证明了这两个问题都不承认多项式核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信