A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning

Tal Ben-Nun, Maciej Besta, Simon Huber, A. Ziogas, D. Peter, T. Hoefler
{"title":"A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning","authors":"Tal Ben-Nun, Maciej Besta, Simon Huber, A. Ziogas, D. Peter, T. Hoefler","doi":"10.1109/IPDPS.2019.00018","DOIUrl":null,"url":null,"abstract":"We introduce Deep500: the first customizable benchmarking infrastructure that enables fair comparison of the plethora of deep learning frameworks, algorithms, libraries, and techniques. The key idea behind Deep500 is its modular design, where deep learning is factorized into four distinct levels: operators, network processing, training, and distributed training. Our evaluation illustrates that Deep500 is customizable (enables combining and benchmarking different deep learning codes) and fair (uses carefully selected metrics). Moreover, Deep500 is fast (incurs negligible overheads), verifiable (offers infrastructure to analyze correctness), and reproducible. Finally, as the first distributed and reproducible benchmarking system for deep learning, Deep500 provides software infrastructure to utilize the most powerful supercomputers for extreme-scale workloads.","PeriodicalId":403406,"journal":{"name":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2019.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

Abstract

We introduce Deep500: the first customizable benchmarking infrastructure that enables fair comparison of the plethora of deep learning frameworks, algorithms, libraries, and techniques. The key idea behind Deep500 is its modular design, where deep learning is factorized into four distinct levels: operators, network processing, training, and distributed training. Our evaluation illustrates that Deep500 is customizable (enables combining and benchmarking different deep learning codes) and fair (uses carefully selected metrics). Moreover, Deep500 is fast (incurs negligible overheads), verifiable (offers infrastructure to analyze correctness), and reproducible. Finally, as the first distributed and reproducible benchmarking system for deep learning, Deep500 provides software infrastructure to utilize the most powerful supercomputers for extreme-scale workloads.
面向高性能和可复制深度学习的模块化基准基础设施
我们介绍了Deep500:第一个可定制的基准基础设施,可以对大量的深度学习框架、算法、库和技术进行公平比较。Deep500背后的关键思想是它的模块化设计,其中深度学习被分解为四个不同的层次:操作员、网络处理、训练和分布式训练。我们的评估表明,Deep500是可定制的(可以组合不同的深度学习代码并对其进行基准测试)和公平的(使用精心选择的指标)。此外,Deep500速度快(产生的开销可以忽略不计),可验证(提供分析正确性的基础设施),并且可复制。最后,作为第一个分布式和可复制的深度学习基准测试系统,Deep500提供了软件基础设施,以利用最强大的超级计算机来处理极端规模的工作负载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信