Gapped spectrum shaping for tandem-hopped radar/communications & cognitive sensing

John Jakabosky, Brandon Ravenscroft, S. Blunt, A. Martone
{"title":"Gapped spectrum shaping for tandem-hopped radar/communications & cognitive sensing","authors":"John Jakabosky, Brandon Ravenscroft, S. Blunt, A. Martone","doi":"10.1109/RADAR.2016.7485067","DOIUrl":null,"url":null,"abstract":"A non-repeating FMCW waveform was recently developed and experimentally demonstrated to provide a feasible instantiation of FM noise radar. This emission scheme was subsequently examined in terms of the impact of both stationary and hopped spectral gaps with the prospect of enabling in-band interference avoidance for cognitive sensing and possibly tandem hopped radar/communications. Here this gap-hopped spectrum framework is further explored with regard to the relation between the shaping of spectral gaps and the associated time sidelobe response. Experimental loopback measurements are shown that provide a sense of how this form of emission would operate on a real system.","PeriodicalId":185932,"journal":{"name":"2016 IEEE Radar Conference (RadarConf)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Radar Conference (RadarConf)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2016.7485067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

A non-repeating FMCW waveform was recently developed and experimentally demonstrated to provide a feasible instantiation of FM noise radar. This emission scheme was subsequently examined in terms of the impact of both stationary and hopped spectral gaps with the prospect of enabling in-band interference avoidance for cognitive sensing and possibly tandem hopped radar/communications. Here this gap-hopped spectrum framework is further explored with regard to the relation between the shaping of spectral gaps and the associated time sidelobe response. Experimental loopback measurements are shown that provide a sense of how this form of emission would operate on a real system.
用于串联跳变雷达/通信和认知传感的间隙频谱整形
最近开发了一种非重复FMCW波形,并进行了实验验证,为调频噪声雷达提供了可行的实例。该发射方案随后在固定和跳频间隙的影响方面进行了研究,以期实现对认知感知和可能的串联跳频雷达/通信的带内干扰避免。本文进一步探讨了谱隙形成与相关时旁瓣响应之间的关系。实验环回测量显示,提供一种感觉,这种形式的发射将如何操作在一个真实的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信