Investigation of Octane Number Loss Based on Particle Swarm Optimization

Huawen Yang, Zihao Wang, Liang Chen
{"title":"Investigation of Octane Number Loss Based on Particle Swarm Optimization","authors":"Huawen Yang, Zihao Wang, Liang Chen","doi":"10.1145/3487075.3487086","DOIUrl":null,"url":null,"abstract":"The Particle swarm optimization (PSO) is a swarm intelligence algorithm that simulates the predatory behavior of birds. It is inspired by the social behavior of bird flocking. It is widely used in many fields because of its easy implementation, high accuracy, and fast convergence. In this article, we propose a method to improve the performance of the PSO algorithm by combining it with a gradient boosting regression (GBR) model. We apply our algorithm for the optimization of octane number (express in RON) loss in the gasoline industry. RON is the most significant indicator that reflects the combustion petrol performance and it is the commercial brand name of petrol (e.g., 89#, 92#, 95#). Our simulation results demonstrate that RON average loss rate was greater than 30%, under the product's sulfur content was no greater than 5μg/g (Euro VI standard is no greater than 10μg/g).","PeriodicalId":354966,"journal":{"name":"Proceedings of the 5th International Conference on Computer Science and Application Engineering","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Computer Science and Application Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487075.3487086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Particle swarm optimization (PSO) is a swarm intelligence algorithm that simulates the predatory behavior of birds. It is inspired by the social behavior of bird flocking. It is widely used in many fields because of its easy implementation, high accuracy, and fast convergence. In this article, we propose a method to improve the performance of the PSO algorithm by combining it with a gradient boosting regression (GBR) model. We apply our algorithm for the optimization of octane number (express in RON) loss in the gasoline industry. RON is the most significant indicator that reflects the combustion petrol performance and it is the commercial brand name of petrol (e.g., 89#, 92#, 95#). Our simulation results demonstrate that RON average loss rate was greater than 30%, under the product's sulfur content was no greater than 5μg/g (Euro VI standard is no greater than 10μg/g).
基于粒子群优化的辛烷值损失研究
粒子群算法(PSO)是一种模拟鸟类捕食行为的群体智能算法。它的灵感来自于鸟群的社会行为。它具有实现简单、精度高、收敛速度快等优点,在许多领域得到了广泛的应用。在本文中,我们提出了一种将PSO算法与梯度增强回归(GBR)模型相结合来提高PSO算法性能的方法。将该算法应用于汽油工业辛烷值(以RON表示)损失优化。RON是反映汽油燃烧性能最重要的指标,是汽油的商业品牌名称(如89#,92#,95#)。我们的模拟结果表明,在产品含硫量不大于5μg/g(欧六标准不大于10μg/g)的情况下,RON平均损失率大于30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信