{"title":"MSR-DARTS: Minimum Stable Rank of Differentiable Architecture Search","authors":"Kengo Machida, K. Uto, K. Shinoda, Taiji Suzuki","doi":"10.1109/IJCNN55064.2022.9892751","DOIUrl":null,"url":null,"abstract":"In neural architecture search (NAS), differentiable architecture search (DARTS) has recently attracted much attention due to its high efficiency. However, this method finds a model with the weights converging faster than the others, and such a model with fastest convergence often leads to overfitting. Accordingly, the resulting model cannot always be well-generalized. To overcome this problem, we propose a method called minimum stable rank DARTS (MSR-DARTS), for finding a model with the best generalization error by replacing architecture optimization with the selection process using the minimum stable rank criterion. Specifically, a convolution operator is represented by a matrix, and MSR-DARTS selects the one with the smallest stable rank. We evaluated MSR-DARTS on CIFAR-10 and ImageNet datasets. It achieves an error rate of 2.54% with 4.0M parameters within 0.3 GPU-days on CIFAR-10, and a top-1 error rate of 23.9% on ImageNet.","PeriodicalId":106974,"journal":{"name":"2022 International Joint Conference on Neural Networks (IJCNN)","volume":"33 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN55064.2022.9892751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In neural architecture search (NAS), differentiable architecture search (DARTS) has recently attracted much attention due to its high efficiency. However, this method finds a model with the weights converging faster than the others, and such a model with fastest convergence often leads to overfitting. Accordingly, the resulting model cannot always be well-generalized. To overcome this problem, we propose a method called minimum stable rank DARTS (MSR-DARTS), for finding a model with the best generalization error by replacing architecture optimization with the selection process using the minimum stable rank criterion. Specifically, a convolution operator is represented by a matrix, and MSR-DARTS selects the one with the smallest stable rank. We evaluated MSR-DARTS on CIFAR-10 and ImageNet datasets. It achieves an error rate of 2.54% with 4.0M parameters within 0.3 GPU-days on CIFAR-10, and a top-1 error rate of 23.9% on ImageNet.