{"title":"Attack-resilient state estimation in the presence of noise","authors":"M. Pajic, P. Tabuada, Insup Lee, George J. Pappas","doi":"10.1109/CDC.2015.7403135","DOIUrl":null,"url":null,"abstract":"We consider the problem of attack-resilient state estimation in the presence of noise. We focus on the most general model for sensor attacks where any signal can be injected via the compromised sensors. An l0-based state estimator that can be formulated as a mixed-integer linear program and its convex relaxation based on the l1 norm are presented. For both l0 and l1-based state estimators, we derive rigorous analytic bounds on the state-estimation errors. We show that the worst-case error is linear with the size of the noise, meaning that the attacker cannot exploit noise and modeling errors to introduce unbounded state-estimation errors. Finally, we show how the presented attack-resilient state estimators can be used for sound attack detection and identification, and provide conditions on the size of attack vectors that will ensure correct identification of compromised sensors.","PeriodicalId":308101,"journal":{"name":"2015 54th IEEE Conference on Decision and Control (CDC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 54th IEEE Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2015.7403135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63
Abstract
We consider the problem of attack-resilient state estimation in the presence of noise. We focus on the most general model for sensor attacks where any signal can be injected via the compromised sensors. An l0-based state estimator that can be formulated as a mixed-integer linear program and its convex relaxation based on the l1 norm are presented. For both l0 and l1-based state estimators, we derive rigorous analytic bounds on the state-estimation errors. We show that the worst-case error is linear with the size of the noise, meaning that the attacker cannot exploit noise and modeling errors to introduce unbounded state-estimation errors. Finally, we show how the presented attack-resilient state estimators can be used for sound attack detection and identification, and provide conditions on the size of attack vectors that will ensure correct identification of compromised sensors.