Differentials and distances in probabilistic coherence spaces

T. Ehrhard
{"title":"Differentials and distances in probabilistic coherence spaces","authors":"T. Ehrhard","doi":"10.46298/lmcs-18(3:2)2022","DOIUrl":null,"url":null,"abstract":"In probabilistic coherence spaces, a denotational model of probabilistic\nfunctional languages, morphisms are analytic and therefore smooth. We explore\ntwo related applications of the corresponding derivatives. First we show how\nderivatives allow to compute the expectation of execution time in the weak head\nreduction of probabilistic PCF (pPCF). Next we apply a general notion of\n\"local\" differential of morphisms to the proof of a Lipschitz property of these\nmorphisms allowing in turn to relate the observational distance on pPCF terms\nto a distance the model is naturally equipped with. This suggests that\nextending probabilistic programming languages with derivatives, in the spirit\nof the differential lambda-calculus, could be quite meaningful.","PeriodicalId":284975,"journal":{"name":"International Conference on Formal Structures for Computation and Deduction","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Formal Structures for Computation and Deduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-18(3:2)2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In probabilistic coherence spaces, a denotational model of probabilistic functional languages, morphisms are analytic and therefore smooth. We explore two related applications of the corresponding derivatives. First we show how derivatives allow to compute the expectation of execution time in the weak head reduction of probabilistic PCF (pPCF). Next we apply a general notion of "local" differential of morphisms to the proof of a Lipschitz property of these morphisms allowing in turn to relate the observational distance on pPCF terms to a distance the model is naturally equipped with. This suggests that extending probabilistic programming languages with derivatives, in the spirit of the differential lambda-calculus, could be quite meaningful.
概率相干空间中的微分和距离
在概率相干空间,一个概率功能语言的指称模型中,态射是解析的,因此是光滑的。我们探讨了相应导数的两个相关应用。首先,我们展示了导数如何允许在概率PCF (pPCF)的弱头部缩减中计算执行时间的期望。接下来,我们将态射的“局部”微分的一般概念应用于这些态射的Lipschitz性质的证明,从而允许将pPCF项上的观测距离与模型自然配备的距离联系起来。这表明,在微分微积分的精神下,用导数扩展概率编程语言可能是非常有意义的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信