S. Hiwa, Yuuki Kohri, Keisuke Hachisuka, T. Hiroyasu
{"title":"Region-of-interest extraction of fMRI data using genetic algorithms","authors":"S. Hiwa, Yuuki Kohri, Keisuke Hachisuka, T. Hiroyasu","doi":"10.1109/SSCI.2016.7850135","DOIUrl":null,"url":null,"abstract":"Functional connectivity, which is indicated by time-course correlations of brain activities among different brain regions, is one of the most useful metrics to represent human brain states. In functional connectivity analysis (FCA), the whole brain is parcellated into a certain number of regions based on anatomical atlases, and the mean time series of brain activities are calculated. Then, the correlation between mean signals of two regions is repeatedly calculated for all combinations of regions, and finally, we obtain the correlation matrix of the whole brain. FCA allows us to understand which regions activate cooperatively during specific stimulus or tasks. In this study, we attempt to represent human brain states using functional connectivity as feature vectors. As there are a number of brain regions, it is difficult to determine which regions are prominent to represent the brain state. Therefore, we proposed an automatic region-of-interest (ROI) extraction method to classify human brain states. Time-series brain activities were measured by functional magnetic resonance imaging (fMRI), and FCA was performed. Each element of the correlation matrix was used as a feature vector for brain state classification, and element characteristics were learned using supervised learning methods. The elements used as feature vectors, i.e., ROIs, were determined automatically using a genetic algorithm to maximize the classification accuracy of brain states. fMRI data measured during two emotional conditions, i.e., pleasant and unpleasant emotions, were used to show the effectiveness of the proposed method. Numerical experiments revealed that the proposed method could extract the superior frontal gyrus, orbitofrontal cortex, cuneus, cerebellum, and cerebellar vermis as ROIs associated with pleasant and unpleasant emotions.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2016.7850135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Functional connectivity, which is indicated by time-course correlations of brain activities among different brain regions, is one of the most useful metrics to represent human brain states. In functional connectivity analysis (FCA), the whole brain is parcellated into a certain number of regions based on anatomical atlases, and the mean time series of brain activities are calculated. Then, the correlation between mean signals of two regions is repeatedly calculated for all combinations of regions, and finally, we obtain the correlation matrix of the whole brain. FCA allows us to understand which regions activate cooperatively during specific stimulus or tasks. In this study, we attempt to represent human brain states using functional connectivity as feature vectors. As there are a number of brain regions, it is difficult to determine which regions are prominent to represent the brain state. Therefore, we proposed an automatic region-of-interest (ROI) extraction method to classify human brain states. Time-series brain activities were measured by functional magnetic resonance imaging (fMRI), and FCA was performed. Each element of the correlation matrix was used as a feature vector for brain state classification, and element characteristics were learned using supervised learning methods. The elements used as feature vectors, i.e., ROIs, were determined automatically using a genetic algorithm to maximize the classification accuracy of brain states. fMRI data measured during two emotional conditions, i.e., pleasant and unpleasant emotions, were used to show the effectiveness of the proposed method. Numerical experiments revealed that the proposed method could extract the superior frontal gyrus, orbitofrontal cortex, cuneus, cerebellum, and cerebellar vermis as ROIs associated with pleasant and unpleasant emotions.