Facial Emotion Prediction through Action Units and Deep Learning

Madhuka Nadeeshani, Akash Jayaweera, Pradeepa Samarasinghe
{"title":"Facial Emotion Prediction through Action Units and Deep Learning","authors":"Madhuka Nadeeshani, Akash Jayaweera, Pradeepa Samarasinghe","doi":"10.1109/ICAC51239.2020.9357138","DOIUrl":null,"url":null,"abstract":"With the recent advancements in deep learning techniques, attention has been given to training and testing facial emotions through highly complex deep learning systems. In this paper we apply machine learning techniques which require less resources to produce comparable results for emotion prediction. As the underlying technique for the emotion prediction in this research is based on clinically recognized Facial Action Coding System (FACS), a further analysis is given on the contribution of each of the Action Units (AUs) for the predicted emotion. This analysis would complement, strengthen and be a main resource for addressing many different health issues related to facial muscle movements.","PeriodicalId":253040,"journal":{"name":"2020 2nd International Conference on Advancements in Computing (ICAC)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Advancements in Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC51239.2020.9357138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

With the recent advancements in deep learning techniques, attention has been given to training and testing facial emotions through highly complex deep learning systems. In this paper we apply machine learning techniques which require less resources to produce comparable results for emotion prediction. As the underlying technique for the emotion prediction in this research is based on clinically recognized Facial Action Coding System (FACS), a further analysis is given on the contribution of each of the Action Units (AUs) for the predicted emotion. This analysis would complement, strengthen and be a main resource for addressing many different health issues related to facial muscle movements.
基于动作单元和深度学习的面部情绪预测
随着深度学习技术的进步,人们开始关注通过高度复杂的深度学习系统来训练和测试面部情绪。在本文中,我们应用需要较少资源的机器学习技术来产生可比较的情绪预测结果。由于本研究中情绪预测的基础技术是基于临床识别的面部动作编码系统(FACS),因此进一步分析了每个动作单元(au)对预测情绪的贡献。这种分析将补充、加强并成为解决与面部肌肉运动有关的许多不同健康问题的主要资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信