EM Algorithm for Non-Data-Aided SNR Estimation of Linearly-Modulated Signals over SIMO Channels

Mohamed Ali Boujelben, F. Bellili, S. Affes, A. Stephenne
{"title":"EM Algorithm for Non-Data-Aided SNR Estimation of Linearly-Modulated Signals over SIMO Channels","authors":"Mohamed Ali Boujelben, F. Bellili, S. Affes, A. Stephenne","doi":"10.1109/GLOCOM.2009.5425216","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of non-data-aided SNR estimation in wireless SIMO channels. We derive the per-antenna ML SNR estimator using the expectation-maximization (EM) algorithm under constant channels and additive white Gaussian noise (AWGN). The new method is valid for any arbitrary constellation. It is NDA and, therefore, does not impinge on the hole throughput of the system. We obtain two non linear vector equations which are tackled by a less complex approach based on the EM algorithm. The noise components are assumed to be spatially uncorrelated over all the antenna elements and temporally white with equal power. Besides, in order to evaluate our EM-ML SNR estimator, we derive the Cramer-Rao lower bound (CRLB) in the DA case. Monte Carlo simulations show, that our new estimator offers, a substantial performance improvement over the SISO ML SNR estimator due to the optimal usage of the mutual information between the antenna branches, and that it reaches the derived DA CRLBs. To the best of our knowledge, we are the first to derive the ML per-antenna SNR estimators as well as the CRLBs in the NDA and the DA case, respectively, both over SIMO channels.","PeriodicalId":405624,"journal":{"name":"GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference","volume":"32 1 Pt 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2009.5425216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

In this paper, we address the problem of non-data-aided SNR estimation in wireless SIMO channels. We derive the per-antenna ML SNR estimator using the expectation-maximization (EM) algorithm under constant channels and additive white Gaussian noise (AWGN). The new method is valid for any arbitrary constellation. It is NDA and, therefore, does not impinge on the hole throughput of the system. We obtain two non linear vector equations which are tackled by a less complex approach based on the EM algorithm. The noise components are assumed to be spatially uncorrelated over all the antenna elements and temporally white with equal power. Besides, in order to evaluate our EM-ML SNR estimator, we derive the Cramer-Rao lower bound (CRLB) in the DA case. Monte Carlo simulations show, that our new estimator offers, a substantial performance improvement over the SISO ML SNR estimator due to the optimal usage of the mutual information between the antenna branches, and that it reaches the derived DA CRLBs. To the best of our knowledge, we are the first to derive the ML per-antenna SNR estimators as well as the CRLBs in the NDA and the DA case, respectively, both over SIMO channels.
SIMO信道上线性调制信号非数据辅助信噪比估计的EM算法
本文研究了无线SIMO信道中非数据辅助信噪比估计问题。在恒定信道和加性高斯白噪声(AWGN)条件下,利用期望最大化(EM)算法推导了单天线ML信噪比估计器。该方法对任意星座都有效。它是NDA,因此不会影响系统的孔吞吐量。我们得到了两个非线性向量方程,这两个方程可以用基于EM算法的较简单的方法来求解。假设噪声分量在所有天线单元上在空间上不相关,并且在时间上具有等功率的白度。此外,为了评估我们的EM-ML信噪比估计器,我们推导了DA情况下的Cramer-Rao下界(CRLB)。蒙特卡罗仿真表明,由于天线分支之间互信息的最佳利用,我们的新估计器比SISO ML信噪比估计器提供了显着的性能改进,并且它达到了派生的DA crlb。据我们所知,我们是第一个在SIMO信道上分别推导出NDA和DA情况下的ML每天线信噪比估计器以及crlb的人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信