Investigating Content Selection for Language Generation using Machine Learning

Colin Kelly, Ann A. Copestake, Nikiforos Karamanis
{"title":"Investigating Content Selection for Language Generation using Machine Learning","authors":"Colin Kelly, Ann A. Copestake, Nikiforos Karamanis","doi":"10.3115/1610195.1610218","DOIUrl":null,"url":null,"abstract":"The content selection component of a natural language generation system decides which information should be communicated in its output. We use information from reports on the game of cricket. We first describe a simple factoid-to-text alignment algorithm then treat content selection as a collective classification problem and demonstrate that simple 'grouping' of statistics at various levels of granularity yields substantially improved results over a probabilistic baseline. We additionally show that holding back of specific types of input data, and linking database structures with commonality further increase performance.","PeriodicalId":307841,"journal":{"name":"European Workshop on Natural Language Generation","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Workshop on Natural Language Generation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1610195.1610218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

The content selection component of a natural language generation system decides which information should be communicated in its output. We use information from reports on the game of cricket. We first describe a simple factoid-to-text alignment algorithm then treat content selection as a collective classification problem and demonstrate that simple 'grouping' of statistics at various levels of granularity yields substantially improved results over a probabilistic baseline. We additionally show that holding back of specific types of input data, and linking database structures with commonality further increase performance.
使用机器学习研究语言生成的内容选择
自然语言生成系统的内容选择组件决定在其输出中应该传达哪些信息。我们使用来自板球比赛报道的信息。我们首先描述了一个简单的事实到文本对齐算法,然后将内容选择视为一个集体分类问题,并证明了在不同粒度级别上对统计数据进行简单的“分组”可以大大提高概率基线的结果。我们还表明,保留特定类型的输入数据,并将数据库结构与共性联系起来,可以进一步提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信