Using fuzzy adaptive fusion in face detection

Q. Xiao
{"title":"Using fuzzy adaptive fusion in face detection","authors":"Q. Xiao","doi":"10.1109/CIBIM.2011.5949217","DOIUrl":null,"url":null,"abstract":"Face detection, either from still images or video frames, is an essential first step in any automated facial recognition system. A novel approach for face detection is presented in this paper. Multiple algorithms are used to process the same face image, but extract different facial features. Since it does not amplify the errors, the sum rule is applied to the score outputs of multiple detectors. Different from the other approaches that use the pre-set weights, a fuzzy model is developed to dynamically generate the weights based on the image quality. The experimental results demonstrate a distinct advantage of the proposed method - detecting face in a near dark environment.","PeriodicalId":396721,"journal":{"name":"2011 IEEE Workshop on Computational Intelligence in Biometrics and Identity Management (CIBIM)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Computational Intelligence in Biometrics and Identity Management (CIBIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBIM.2011.5949217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Face detection, either from still images or video frames, is an essential first step in any automated facial recognition system. A novel approach for face detection is presented in this paper. Multiple algorithms are used to process the same face image, but extract different facial features. Since it does not amplify the errors, the sum rule is applied to the score outputs of multiple detectors. Different from the other approaches that use the pre-set weights, a fuzzy model is developed to dynamically generate the weights based on the image quality. The experimental results demonstrate a distinct advantage of the proposed method - detecting face in a near dark environment.
模糊自适应融合在人脸检测中的应用
无论是从静止图像还是视频帧中进行面部检测,都是任何自动面部识别系统必不可少的第一步。提出了一种新的人脸检测方法。在处理同一幅人脸图像时,采用了多种算法,但提取的人脸特征不同。因为它不会放大错误,所以求和规则应用于多个检测器的分数输出。与其他使用预设权值的方法不同,本文提出了一种基于图像质量动态生成权值的模糊模型。实验结果表明,该方法具有明显的优势,可以在接近黑暗的环境中检测人脸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信