Foot Deformity Determination and Health Risk Prediction Through Foot Plantar Analysis Using Pressure Sensor Matrix

Jessie R. Balbin, J. D. De Guzman, Joaquin Gerard N. Trinidad, Francis Dominic S. Yaya
{"title":"Foot Deformity Determination and Health Risk Prediction Through Foot Plantar Analysis Using Pressure Sensor Matrix","authors":"Jessie R. Balbin, J. D. De Guzman, Joaquin Gerard N. Trinidad, Francis Dominic S. Yaya","doi":"10.1109/I2CACIS52118.2021.9495907","DOIUrl":null,"url":null,"abstract":"One of the most overlooked parts of the body is the feet. Foot health can generally affect the overall health of a person if not treated well. This study utilized Support Vector Machines and an artificial neural network to determine the foot deformity of a person by using a foot plantar pressure sensor matrix called Velostat. The researchers used raspberry pi to run the GUI programmed using Python. The developed device will determine if the feet are normal, high arched, or low arched. The testing was done on 40 respondents and resulted in 95% accuracy in determining foot deformity.","PeriodicalId":210770,"journal":{"name":"2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CACIS52118.2021.9495907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

One of the most overlooked parts of the body is the feet. Foot health can generally affect the overall health of a person if not treated well. This study utilized Support Vector Machines and an artificial neural network to determine the foot deformity of a person by using a foot plantar pressure sensor matrix called Velostat. The researchers used raspberry pi to run the GUI programmed using Python. The developed device will determine if the feet are normal, high arched, or low arched. The testing was done on 40 respondents and resulted in 95% accuracy in determining foot deformity.
基于压力传感器矩阵足底分析的足部畸形诊断与健康风险预测
脚是最容易被忽视的身体部位之一。如果治疗不当,足部健康通常会影响一个人的整体健康。本研究利用支持向量机和人工神经网络,通过使用名为Velostat的足底压力传感器矩阵来确定人的足部畸形。研究人员使用树莓派来运行使用Python编程的GUI。开发的设备将确定脚是正常的,高弓还是低弓。该测试在40名应答者中完成,在确定足部畸形方面准确率达到95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信