The sensitivity of machine learning techniques to variations in sample size : a comparative analysis

J. Andrés, P. L. Fernández, E. Combarro
{"title":"The sensitivity of machine learning techniques to variations in sample size : a comparative analysis","authors":"J. Andrés, P. L. Fernández, E. Combarro","doi":"10.4192/1577-8517-V2_5","DOIUrl":null,"url":null,"abstract":"A comparative analysis of the performance of a number of Machine Learning Techniques (Quinlan's See5, ARNI, FAN and SVM) is conducted. The chosen classification task is the forecasting of the level of efficiency of Spanish commercial and industrial companies. Assignment of the firms is made upon the basis of a set of financial ratios, which make a high dimension feature space with low separability degree. In the present research the effects on the accuracy of variations of each technique in the estimation sample size are measured. The main results suggest that ARNI and See5 yield the best results, even with small sample sizes.","PeriodicalId":404481,"journal":{"name":"The International Journal of Digital Accounting Research","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Digital Accounting Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4192/1577-8517-V2_5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A comparative analysis of the performance of a number of Machine Learning Techniques (Quinlan's See5, ARNI, FAN and SVM) is conducted. The chosen classification task is the forecasting of the level of efficiency of Spanish commercial and industrial companies. Assignment of the firms is made upon the basis of a set of financial ratios, which make a high dimension feature space with low separability degree. In the present research the effects on the accuracy of variations of each technique in the estimation sample size are measured. The main results suggest that ARNI and See5 yield the best results, even with small sample sizes.
机器学习技术对样本量变化的敏感性:比较分析
对几种机器学习技术(Quinlan’s See5、ARNI、FAN和SVM)的性能进行了比较分析。所选择的分类任务是预测西班牙商业和工业公司的效率水平。企业的分配是基于一组财务比率进行的,这构成了一个高维特征空间,但可分度很低。在本研究中,测量了每种技术的变化对估计样本大小的准确性的影响。主要结果表明,即使样本量很小,ARNI和See5也能产生最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信