{"title":"Fault tolerant control design based higher-order sliding mode control for Internal Combustion engine","authors":"N'doye Bada, Sonane Ahmed Ali, N. Langlois","doi":"10.1109/EFEA.2014.7059949","DOIUrl":null,"url":null,"abstract":"In this paper we present a passive fault tolerant control strategy for the Internal Combustion air path. This strategy is carried out under the concept of Higher Order Sliding Mode Control (HOSMC). The proposed fault tolerant strategy incorporates a Super-Twisting controller which handles parametric uncertainties and actuator failures. In this paper we consider two types of actuator failures, additive and loss-of-effectiveness faults., theoretical results on the convergence of the proposed controller based on the Lyapunov theory are derived. The simulations of the proposed controller on a recently validated experimental air path internal combustion model, show good results for actuator failures conditions even in the presence of uncertainties on model parameters.","PeriodicalId":129568,"journal":{"name":"3rd International Symposium on Environmental Friendly Energies and Applications (EFEA)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3rd International Symposium on Environmental Friendly Energies and Applications (EFEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EFEA.2014.7059949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper we present a passive fault tolerant control strategy for the Internal Combustion air path. This strategy is carried out under the concept of Higher Order Sliding Mode Control (HOSMC). The proposed fault tolerant strategy incorporates a Super-Twisting controller which handles parametric uncertainties and actuator failures. In this paper we consider two types of actuator failures, additive and loss-of-effectiveness faults., theoretical results on the convergence of the proposed controller based on the Lyapunov theory are derived. The simulations of the proposed controller on a recently validated experimental air path internal combustion model, show good results for actuator failures conditions even in the presence of uncertainties on model parameters.