Should we consider the users in contextual music auto-tagging models?

Karim M. Ibrahim, Elena V. Epure, G. Peeters, G. Richard
{"title":"Should we consider the users in contextual music auto-tagging models?","authors":"Karim M. Ibrahim, Elena V. Epure, G. Peeters, G. Richard","doi":"10.5281/ZENODO.3961560","DOIUrl":null,"url":null,"abstract":"Music tags are commonly used to describe and categorize music. Various auto-tagging models and datasets have been proposed for the automatic music annotation with tags. However, the past approaches often neglect the fact that many of these tags largely depend on the user, especially the tags related to the context of music listening. In this paper, we address this problem by proposing a user-aware music auto-tagging system and evaluation protocol. Specifically, we use both the audio content and user information extracted from the user listening history to predict contextual tags for a given user/track pair. We propose a new dataset of music tracks annotated with contextual tags per user. We compare our model to the traditional audio-based model and study the influence of user embeddings on the classification quality. Our work shows that explicitly modeling the user listening history into the automatic tagging process could lead to more accurate estimation of contextual tags.","PeriodicalId":309903,"journal":{"name":"International Society for Music Information Retrieval Conference","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Society for Music Information Retrieval Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.3961560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Music tags are commonly used to describe and categorize music. Various auto-tagging models and datasets have been proposed for the automatic music annotation with tags. However, the past approaches often neglect the fact that many of these tags largely depend on the user, especially the tags related to the context of music listening. In this paper, we address this problem by proposing a user-aware music auto-tagging system and evaluation protocol. Specifically, we use both the audio content and user information extracted from the user listening history to predict contextual tags for a given user/track pair. We propose a new dataset of music tracks annotated with contextual tags per user. We compare our model to the traditional audio-based model and study the influence of user embeddings on the classification quality. Our work shows that explicitly modeling the user listening history into the automatic tagging process could lead to more accurate estimation of contextual tags.
我们是否应该考虑上下文音乐自动标记模型中的用户?
音乐标签通常用于描述和分类音乐。针对带标签的音乐自动标注问题,提出了多种自动标注模型和数据集。然而,过去的方法往往忽略了这样一个事实,即许多标签在很大程度上取决于用户,特别是与音乐听的上下文相关的标签。在本文中,我们提出了一个用户感知的音乐自动标记系统和评估协议来解决这个问题。具体来说,我们使用从用户收听历史中提取的音频内容和用户信息来预测给定用户/曲目对的上下文标签。我们提出了一个新的音乐曲目数据集,每个用户都用上下文标签进行注释。我们将我们的模型与传统的基于音频的模型进行比较,并研究用户嵌入对分类质量的影响。我们的工作表明,将用户收听历史明确建模到自动标记过程中可以更准确地估计上下文标记。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信