Intelligent adaptation of Kalman filters using fuzzy logic

J. Lalk
{"title":"Intelligent adaptation of Kalman filters using fuzzy logic","authors":"J. Lalk","doi":"10.1109/FUZZY.1994.343829","DOIUrl":null,"url":null,"abstract":"Significant benefits are to be found by dynamically adapting a Kalman filter state estimator if the noise conditions under which it operates change. It is traditional in adaptation schemes to adapt diagonal elements of the process noise covariance matrix, Q(n), or the measurement noise covariance matrix, R(n), or both. A novel adaptive scheme employing the principles of fuzzy expert systems is explored in this paper. The performance of the new scheme is compared with that of two traditional schemes.<<ETX>>","PeriodicalId":153967,"journal":{"name":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1994.343829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Significant benefits are to be found by dynamically adapting a Kalman filter state estimator if the noise conditions under which it operates change. It is traditional in adaptation schemes to adapt diagonal elements of the process noise covariance matrix, Q(n), or the measurement noise covariance matrix, R(n), or both. A novel adaptive scheme employing the principles of fuzzy expert systems is explored in this paper. The performance of the new scheme is compared with that of two traditional schemes.<>
基于模糊逻辑的卡尔曼滤波智能自适应
如果卡尔曼滤波状态估计器工作的噪声条件发生变化,则动态适应卡尔曼滤波状态估计器可以获得显著的好处。传统的自适应方案是适应过程噪声协方差矩阵Q(n)或测量噪声协方差矩阵R(n)的对角元素,或两者兼有。本文利用模糊专家系统的原理,提出了一种新的自适应方案。将新方案与两种传统方案的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信