False Alarm Reduction in Atrial Fibrillation Screening

Hesam Halvaei, E. Svennberg, L. Sörnmo, M. Stridh
{"title":"False Alarm Reduction in Atrial Fibrillation Screening","authors":"Hesam Halvaei, E. Svennberg, L. Sörnmo, M. Stridh","doi":"10.22489/CinC.2020.255","DOIUrl":null,"url":null,"abstract":"Early detection of AF is essential and emphasizes the significance of AF screening. However, AF detection in screening ECGs, usually recorded by handheld and portable devices, is limited because of their high susceptibility to noise. In this study, the feasibility of applying a machine learning-based quality control stage, inserted between the QRS detector and AF detector blocks, is investigated with the aim to improve AF detection. A convolutional neural network was trained to classify the detections into either true or false. False detections were excluded and an updated series of QRS complexes was fed to the AF detector. The results show that the convolutional neural network-based quality control reduces the number of false alarms by 24.8% at the cost of 1.9% decrease in sensitivity compared to AF detection without any quality control.","PeriodicalId":407282,"journal":{"name":"2020 Computing in Cardiology","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Computing in Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2020.255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Early detection of AF is essential and emphasizes the significance of AF screening. However, AF detection in screening ECGs, usually recorded by handheld and portable devices, is limited because of their high susceptibility to noise. In this study, the feasibility of applying a machine learning-based quality control stage, inserted between the QRS detector and AF detector blocks, is investigated with the aim to improve AF detection. A convolutional neural network was trained to classify the detections into either true or false. False detections were excluded and an updated series of QRS complexes was fed to the AF detector. The results show that the convolutional neural network-based quality control reduces the number of false alarms by 24.8% at the cost of 1.9% decrease in sensitivity compared to AF detection without any quality control.
减少房颤筛查中的误报
房颤的早期发现至关重要,强调房颤筛查的意义。然而,在筛选心电图时,AF检测通常由手持和便携式设备记录,由于其对噪声的高敏感性而受到限制。在本研究中,研究了在QRS检测器和AF检测器块之间插入基于机器学习的质量控制阶段以提高AF检测的可行性。训练卷积神经网络将检测分为真或假。排除假检测,并将一系列更新的QRS配合物馈送到AF检测器。结果表明,与没有任何质量控制的AF检测相比,基于卷积神经网络的质量控制使误报数量减少了24.8%,灵敏度降低了1.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信