Integrated optimisation method for personalised modelling and case studies for medical decision support

N. Kasabov, Yingjie Hu
{"title":"Integrated optimisation method for personalised modelling and case studies for medical decision support","authors":"N. Kasabov, Yingjie Hu","doi":"10.1504/IJFIPM.2010.039123","DOIUrl":null,"url":null,"abstract":"Personalised modelling aims to create a unique computational diagnostic or prognostic model for an individual. The paper reports a new Integrated Method for Personalised Modelling (IMPM) that applies global optimisation of variables (features) and neighbourhood of appropriate data samples to create an accurate personalised model for an individual. The proposed IMPM allows for adaptation, monitoring and improvement of an individual's model. Three medical decision support problems are used as illustrations: cancer diagnosis and profiling; risk of disease evaluation based on whole genome SNPs data; chronic disease decision support. The method leads to improved accuracy and unique personalised profiling that could be used for personalised treatment and personalised drug design.","PeriodicalId":216126,"journal":{"name":"Int. J. Funct. Informatics Pers. Medicine","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Funct. Informatics Pers. Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJFIPM.2010.039123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

Personalised modelling aims to create a unique computational diagnostic or prognostic model for an individual. The paper reports a new Integrated Method for Personalised Modelling (IMPM) that applies global optimisation of variables (features) and neighbourhood of appropriate data samples to create an accurate personalised model for an individual. The proposed IMPM allows for adaptation, monitoring and improvement of an individual's model. Three medical decision support problems are used as illustrations: cancer diagnosis and profiling; risk of disease evaluation based on whole genome SNPs data; chronic disease decision support. The method leads to improved accuracy and unique personalised profiling that could be used for personalised treatment and personalised drug design.
医疗决策支持的个性化建模和案例研究的集成优化方法
个性化建模旨在为个人创建一个独特的计算诊断或预后模型。本文报告了一种新的个性化建模集成方法(IMPM),该方法应用变量(特征)的全局优化和适当数据样本的邻域来为个人创建准确的个性化模型。拟议的IMPM允许对个人模型进行调整、监控和改进。以三个医疗决策支持问题为例:癌症诊断和分析;基于全基因组snp数据的疾病风险评估;慢性病决策支持。该方法可提高准确性和独特的个性化分析,可用于个性化治疗和个性化药物设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信