New exact soliton solutions, bifurcation and multistability behaviors of traveling waves for the (3+1)-dimensional modified Zakharov-Kuznetsov equation with higher order dispersion

A. Saha, S. B. G. Karakoç, K. Ali
{"title":"New exact soliton solutions, bifurcation and multistability behaviors of traveling waves for the (3+1)-dimensional modified Zakharov-Kuznetsov equation with higher order dispersion","authors":"A. Saha, S. B. G. Karakoç, K. Ali","doi":"10.22541/au.163533971.16788809/v1","DOIUrl":null,"url":null,"abstract":"The goal of the present paper is to obtain and analyze new exact\ntravelling wave solutions and bifurcation behavior of modified\nZakharov-Kuznetsov (mZK) equation with higher order dispersion term. For\nthis purpose, first and second simple methods are used to build soliton\nsolutions of travelling wave solutions. Furthermore, bifurcation\nbehavior of traveling waves including new type of quasiperiodic and\nmulti-periodic traveling wave motions have been examined depending on\nthe physical parameters. Multistability for the nonlinear mZK equation\nhas been investigated depending on fixed values of physical parameters\nwith various initial conditions. The suggested methods for the\nanalytical solutions are powerful and benefical tools to obtain the\nexact travelling wave solutions of nonlinear evolution equations\n(NLEEs). Two and three-dimensional plots are also provided to illustrate\nthe new solutions. Bifurcation and multistability behaviors of traveling\nwave solution of the nonlinear mZK equation with higher order dispersion\nwill add some value in the literature of mathematical and plasma\nphysics.","PeriodicalId":127589,"journal":{"name":"Mathematical Sciences and Applications E-Notes","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Sciences and Applications E-Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22541/au.163533971.16788809/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of the present paper is to obtain and analyze new exact travelling wave solutions and bifurcation behavior of modified Zakharov-Kuznetsov (mZK) equation with higher order dispersion term. For this purpose, first and second simple methods are used to build soliton solutions of travelling wave solutions. Furthermore, bifurcation behavior of traveling waves including new type of quasiperiodic and multi-periodic traveling wave motions have been examined depending on the physical parameters. Multistability for the nonlinear mZK equation has been investigated depending on fixed values of physical parameters with various initial conditions. The suggested methods for the analytical solutions are powerful and benefical tools to obtain the exact travelling wave solutions of nonlinear evolution equations (NLEEs). Two and three-dimensional plots are also provided to illustrate the new solutions. Bifurcation and multistability behaviors of traveling wave solution of the nonlinear mZK equation with higher order dispersion will add some value in the literature of mathematical and plasma physics.
具有高阶色散的(3+1)维修正Zakharov-Kuznetsov方程的新的精确孤子解、分岔和行波的多稳定性行为
本文的目的是得到并分析具有高阶色散项的修正zakharov - kuznetsov (mZK)方程的新的精确行波解和分岔行为。为此,采用第一种和第二种简单的方法来建立行波解的孤子解。此外,研究了基于物理参数的新型准周期和多周期行波运动的行波分岔行为。研究了具有不同初始条件的非线性mZK方程在物理参数固定值下的多稳定性问题。本文提出的解析解方法是求解非线性演化方程行波精确解的有力工具。还提供了二维和三维图来说明新的解决方案。具有高阶色散的非线性mZK方程行波解的分岔和多稳定性行为在数学和等离子体物理文献中具有一定的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信