Theory and algorithm for generalized memory partitioning in high-level synthesis

Yuxin Wang, Peng Li, J. Cong
{"title":"Theory and algorithm for generalized memory partitioning in high-level synthesis","authors":"Yuxin Wang, Peng Li, J. Cong","doi":"10.1145/2554688.2554780","DOIUrl":null,"url":null,"abstract":"The significant development of high-level synthesis tools has greatly facilitated FPGAs as general computing platforms. During the parallelism optimization for the data path, memory becomes a crucial bottleneck that impedes performance enhancement. Simultaneous data access is highly restricted by the data mapping strategy and memory port constraint. Memory partitioning can efficiently map data elements in the same logical array onto multiple physical banks so that the accesses to the array are parallelized. Previous methods for memory partitioning mainly focused on cyclic partitioning for single-port memory. In this work we propose a generalized memory-partitioning framework to provide high data throughput of on-chip memories. We generalize cyclic partitioning into block-cyclic partitioning for a larger design space exploration. We build the conflict detection algorithm on polytope emptiness testing, and use integer points counting in polytopes for intra-bank offset generation. Memory partitioning for multi-port memory is supported in this framework. Experimental results demonstrate that compared to the state-of-art partitioning algorithm, our proposed algorithm can reduce the number of block RAM by 19.58%, slice by 20.26% and DSP by 50%.","PeriodicalId":390562,"journal":{"name":"Proceedings of the 2014 ACM/SIGDA international symposium on Field-programmable gate arrays","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM/SIGDA international symposium on Field-programmable gate arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2554688.2554780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

Abstract

The significant development of high-level synthesis tools has greatly facilitated FPGAs as general computing platforms. During the parallelism optimization for the data path, memory becomes a crucial bottleneck that impedes performance enhancement. Simultaneous data access is highly restricted by the data mapping strategy and memory port constraint. Memory partitioning can efficiently map data elements in the same logical array onto multiple physical banks so that the accesses to the array are parallelized. Previous methods for memory partitioning mainly focused on cyclic partitioning for single-port memory. In this work we propose a generalized memory-partitioning framework to provide high data throughput of on-chip memories. We generalize cyclic partitioning into block-cyclic partitioning for a larger design space exploration. We build the conflict detection algorithm on polytope emptiness testing, and use integer points counting in polytopes for intra-bank offset generation. Memory partitioning for multi-port memory is supported in this framework. Experimental results demonstrate that compared to the state-of-art partitioning algorithm, our proposed algorithm can reduce the number of block RAM by 19.58%, slice by 20.26% and DSP by 50%.
高级综合中广义内存划分的理论与算法
高级综合工具的显著发展极大地促进了fpga作为通用计算平台的发展。在数据路径的并行性优化过程中,内存成为阻碍性能增强的关键瓶颈。同时数据访问受到数据映射策略和存储端口约束的高度限制。内存分区可以有效地将同一逻辑数组中的数据元素映射到多个物理银行,从而实现对数组的并行访问。以前的内存分区方法主要集中在单端口内存的循环分区上。在这项工作中,我们提出了一个通用的内存分区框架,以提供高数据吞吐量的片上存储器。为了更大的设计空间探索,我们将循环分区推广为块循环分区。我们建立了基于多面体空性测试的冲突检测算法,并使用多面体的整数点计数来生成银行间偏移量。该框架支持多端口内存的内存分区。实验结果表明,与现有的分区算法相比,该算法可减少19.58%的块RAM数量,20.26%的切片数量和50%的DSP数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信