Exploiting Resource Usage Patterns for Better Utilization Prediction

Jian Tan, Parijat Dube, Xiaoqiao Meng, Li Zhang
{"title":"Exploiting Resource Usage Patterns for Better Utilization Prediction","authors":"Jian Tan, Parijat Dube, Xiaoqiao Meng, Li Zhang","doi":"10.1109/ICDCSW.2011.53","DOIUrl":null,"url":null,"abstract":"Understanding the resource utilization in computing clouds is critical for efficient resource planning and better operational performance. In this paper, we propose two ways, from microscopic and macroscopic perspectives, to predict the resource consumption for data centers by statistically characterizing resource usage patterns. The first approach focuses on the usage prediction for a specific node. Compared to the basic method of calibrating AR models for CPU usages separately, we find that using both CPU and memory usage data can improve the forecasting performance. The second approach is based on Principal Component Analysis (PCA) to identify resource usage patterns across different nodes. Using the identified patterns, we can reduce the number of parameters for predicting the resource usage on multiple nodes. In addition, using the principal components obtained from PCA, we propose an optimization framework to optimally consolidate VMs into a number of physical servers and in the meanwhile reduce the resource usage variability. The evaluation of the proposed approaches is based on traces collected from a production cloud environment.","PeriodicalId":133514,"journal":{"name":"2011 31st International Conference on Distributed Computing Systems Workshops","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 31st International Conference on Distributed Computing Systems Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCSW.2011.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Understanding the resource utilization in computing clouds is critical for efficient resource planning and better operational performance. In this paper, we propose two ways, from microscopic and macroscopic perspectives, to predict the resource consumption for data centers by statistically characterizing resource usage patterns. The first approach focuses on the usage prediction for a specific node. Compared to the basic method of calibrating AR models for CPU usages separately, we find that using both CPU and memory usage data can improve the forecasting performance. The second approach is based on Principal Component Analysis (PCA) to identify resource usage patterns across different nodes. Using the identified patterns, we can reduce the number of parameters for predicting the resource usage on multiple nodes. In addition, using the principal components obtained from PCA, we propose an optimization framework to optimally consolidate VMs into a number of physical servers and in the meanwhile reduce the resource usage variability. The evaluation of the proposed approaches is based on traces collected from a production cloud environment.
利用资源使用模式进行更好的利用预测
了解计算云中的资源利用率对于有效的资源规划和更好的操作性能至关重要。在本文中,我们提出了两种方法,从微观和宏观的角度,通过统计特征的资源使用模式来预测数据中心的资源消耗。第一种方法侧重于特定节点的使用预测。与单独校准AR模型的CPU使用情况的基本方法相比,我们发现同时使用CPU和内存使用数据可以提高预测性能。第二种方法是基于主成分分析(PCA)来识别跨不同节点的资源使用模式。使用已识别的模式,我们可以减少用于预测多个节点上的资源使用情况的参数数量。此外,利用主成分分析得到的主成分,我们提出了一个优化框架,以最优地将虚拟机整合到多个物理服务器中,同时减少资源使用的可变性。所建议的方法的评估是基于从生产云环境中收集的痕迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信