Repeated communication and Ramsey graphs

N. Alon, A. Orlitsky
{"title":"Repeated communication and Ramsey graphs","authors":"N. Alon, A. Orlitsky","doi":"10.1109/ISIT.1994.394703","DOIUrl":null,"url":null,"abstract":"Studies the savings afforded by repeated use in two zero-error communication problems. 1. Channel coding: proving a correspondence between Ramsey numbers and independence numbers of normal graph powers, the authors show that some channels can communicate exponentially more bits in two uses than they can in one use, and that this is essentially the largest possible increase. Using probabilistic constructions of self-complementary Ramsey graphs, the authors show that similar results hold even when the number of transmissible bits is large relative to the channel's size. 2. Dual-source coding: using probabilistic colorings of directed line graphs, the authors show that there are dual sources where communicating one instance requires arbitrarily many bits, yet communicating many instances requires at most two bits per instance. For dual sources where the number of bits required for a single instance is comparable to the source's size, they employ probabilistic constructions of self-complementary Ramsey graphs that are also Cayley graphs to show that conveying two instances may require only a logarithmic number of additional bits over that needed to convey one instance.<<ETX>>","PeriodicalId":331390,"journal":{"name":"Proceedings of 1994 IEEE International Symposium on Information Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1994.394703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80

Abstract

Studies the savings afforded by repeated use in two zero-error communication problems. 1. Channel coding: proving a correspondence between Ramsey numbers and independence numbers of normal graph powers, the authors show that some channels can communicate exponentially more bits in two uses than they can in one use, and that this is essentially the largest possible increase. Using probabilistic constructions of self-complementary Ramsey graphs, the authors show that similar results hold even when the number of transmissible bits is large relative to the channel's size. 2. Dual-source coding: using probabilistic colorings of directed line graphs, the authors show that there are dual sources where communicating one instance requires arbitrarily many bits, yet communicating many instances requires at most two bits per instance. For dual sources where the number of bits required for a single instance is comparable to the source's size, they employ probabilistic constructions of self-complementary Ramsey graphs that are also Cayley graphs to show that conveying two instances may require only a logarithmic number of additional bits over that needed to convey one instance.<>
重复交流和拉姆齐图
研究在两个零错误通信问题中重复使用所带来的节省。1. 信道编码:证明了拉姆齐数和法向图幂的独立数之间的对应关系,作者证明了一些信道在两次使用中可以比在一次使用中传输指数级多的比特,并且这实际上是可能的最大增长。使用自互补拉姆齐图的概率结构,作者表明,即使当传输比特的数量相对于信道的大小很大时,类似的结果也会成立。2. 双源编码:使用有向线图的概率着色,作者表明存在双源,其中通信一个实例需要任意多的比特,而通信多个实例最多需要每个实例两个比特。对于双源,其中单个实例所需的比特数与源的大小相当,他们采用自互补Ramsey图的概率结构(也是Cayley图)来表明,传递两个实例可能只需要传递一个实例所需的对数额外比特数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信