Contextual partitioning for speech recognition

Christopher G. Kent, J. M. Paul
{"title":"Contextual partitioning for speech recognition","authors":"Christopher G. Kent, J. M. Paul","doi":"10.1145/2501626.2501639","DOIUrl":null,"url":null,"abstract":"Many multicore computers are single-user devices, creating the potential to partition by situational usage contexts, similar to how the human brain is organized. Contextual partitioning (CP) permits multiple simplified versions of the same task to exist in parallel, with selection tied to the context in use. We introduce CP for speech recognition, specifically targeted at user interfaces in handheld embedded devices. Contexts are drawn from webpage interactions. CP results in 61% fewer decoding errors, 97% less training for vocabulary changes, near-linear scaling potential with increasing core counts, and up to a potential 90% reduction in power usage.","PeriodicalId":183677,"journal":{"name":"ACM Trans. Embed. Comput. Syst.","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Embed. Comput. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2501626.2501639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Many multicore computers are single-user devices, creating the potential to partition by situational usage contexts, similar to how the human brain is organized. Contextual partitioning (CP) permits multiple simplified versions of the same task to exist in parallel, with selection tied to the context in use. We introduce CP for speech recognition, specifically targeted at user interfaces in handheld embedded devices. Contexts are drawn from webpage interactions. CP results in 61% fewer decoding errors, 97% less training for vocabulary changes, near-linear scaling potential with increasing core counts, and up to a potential 90% reduction in power usage.
语音识别的上下文划分
许多多核计算机都是单用户设备,这就产生了根据情景使用上下文进行分区的可能性,类似于人脑的组织方式。上下文分区(CP)允许同一任务的多个简化版本并行存在,选择与所使用的上下文相关。我们介绍了语音识别的CP,特别是针对手持嵌入式设备的用户界面。上下文是从网页交互中绘制的。CP可以减少61%的解码错误,减少97%的词汇变化训练,随着核心数量的增加,具有接近线性的扩展潜力,并且可以减少高达90%的功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信