Review of task scheduling algorithms using genetic approach

Ashish Sharma, Navdeep Singh, Abhinav Hans, Kapil Kumar
{"title":"Review of task scheduling algorithms using genetic approach","authors":"Ashish Sharma, Navdeep Singh, Abhinav Hans, Kapil Kumar","doi":"10.1109/CIPECH.2014.7019081","DOIUrl":null,"url":null,"abstract":"The aim of scheduling problem in multiprocessors is to find the optimal or nearly optimal solution for the assignment of multiple tasks to multiple processors so as the minimum completion time can be achieved. The efficiency of any scheduling approach depends upon the problem formulation and the performance characteristics of the algorithm used for the purpose. The scheduling algorithm studied in this paper is Genetic Algorithm (GA) and various variants of genetic algorithm used for task scheduling proposed by various researchers over the period of time. The introduction and efficiency of various variants using the different performance parameters is compared.","PeriodicalId":170027,"journal":{"name":"2014 Innovative Applications of Computational Intelligence on Power, Energy and Controls with their impact on Humanity (CIPECH)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Innovative Applications of Computational Intelligence on Power, Energy and Controls with their impact on Humanity (CIPECH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIPECH.2014.7019081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The aim of scheduling problem in multiprocessors is to find the optimal or nearly optimal solution for the assignment of multiple tasks to multiple processors so as the minimum completion time can be achieved. The efficiency of any scheduling approach depends upon the problem formulation and the performance characteristics of the algorithm used for the purpose. The scheduling algorithm studied in this paper is Genetic Algorithm (GA) and various variants of genetic algorithm used for task scheduling proposed by various researchers over the period of time. The introduction and efficiency of various variants using the different performance parameters is compared.
基于遗传方法的任务调度算法综述
多处理机调度问题的目标是为多个处理机分配多个任务寻找最优或接近最优的解决方案,以使任务完成时间最短。任何调度方法的效率取决于问题的表述和用于该目的的算法的性能特征。本文研究的调度算法是遗传算法(Genetic algorithm, GA),以及长期以来各种研究者提出的用于任务调度的遗传算法的各种变体。比较了使用不同性能参数的各种变体的介绍和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信