Optimization strategies for portable code for Monte Carlo-based value-at-risk systems

J. Varela, Claus Kestel, C. D. Schryver, N. Wehn, Sascha Desmettre, R. Korn
{"title":"Optimization strategies for portable code for Monte Carlo-based value-at-risk systems","authors":"J. Varela, Claus Kestel, C. D. Schryver, N. Wehn, Sascha Desmettre, R. Korn","doi":"10.1145/2830556.2830559","DOIUrl":null,"url":null,"abstract":"Value-at-risk (VaR) computations are one important basic element of risk analysis and management applications. On the one hand, risk management systems need to be flexible and maintainable, but on the other hand they require a very high computational power. In general, accelerators provide high speedups, but come with a limited flexibility. In this work, we investigate two approaches towards portable and fast code for VaR computations on heterogeneous platforms: operator tuning and the use of OpenCL. We show that operator tuning can save up one third of run time on CPU-based systems in the calibration step. For OpenCL, we present a detailed analysis of run time on CPU, GPU, and Xeon Phi, and evaluate its portability. We also find that the same code runs up to 12x faster in a VaR setting with an accelerator card being present, without any code changes required.","PeriodicalId":254831,"journal":{"name":"Proceedings of the 8th Workshop on High Performance Computational Finance","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th Workshop on High Performance Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2830556.2830559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Value-at-risk (VaR) computations are one important basic element of risk analysis and management applications. On the one hand, risk management systems need to be flexible and maintainable, but on the other hand they require a very high computational power. In general, accelerators provide high speedups, but come with a limited flexibility. In this work, we investigate two approaches towards portable and fast code for VaR computations on heterogeneous platforms: operator tuning and the use of OpenCL. We show that operator tuning can save up one third of run time on CPU-based systems in the calibration step. For OpenCL, we present a detailed analysis of run time on CPU, GPU, and Xeon Phi, and evaluate its portability. We also find that the same code runs up to 12x faster in a VaR setting with an accelerator card being present, without any code changes required.
基于蒙特卡罗的风险价值系统的可移植代码的优化策略
风险价值(VaR)计算是风险分析和管理应用的一个重要基本要素。一方面,风险管理系统需要灵活和可维护,但另一方面,它们需要非常高的计算能力。一般来说,加速器提供了很高的速度,但灵活性有限。在这项工作中,我们研究了在异构平台上实现可移植和快速VaR计算代码的两种方法:操作符调优和OpenCL的使用。我们表明,在基于cpu的系统中,算子调优可以在校准步骤中节省三分之一的运行时间。对于OpenCL,我们详细分析了在CPU、GPU和Xeon Phi上的运行时间,并评估了其可移植性。我们还发现,相同的代码在带有加速卡的VaR设置中运行速度提高了12倍,而无需进行任何代码更改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信