Modulation recognition using side information and hybrid learning

K. Arumugam, I. Kadampot, Mehrdad Tahmasbi, Shaswat Shah, M. Bloch, S. Pokutta
{"title":"Modulation recognition using side information and hybrid learning","authors":"K. Arumugam, I. Kadampot, Mehrdad Tahmasbi, Shaswat Shah, M. Bloch, S. Pokutta","doi":"10.1109/DySPAN.2017.7920750","DOIUrl":null,"url":null,"abstract":"Recent applications of machine learning to modulation recognition have demonstrated the potential of deep learning to achieve state-of-the-art performance. We propose to further extend this approach by using flexible time-space decompositions that are more in line with the actual learning task, as well as integrate side-information, such as higher order moments, directly into the training process. Our promising preliminary results suggest that there are many more benefits to be reaped from such approaches.","PeriodicalId":221877,"journal":{"name":"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DySPAN.2017.7920750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Recent applications of machine learning to modulation recognition have demonstrated the potential of deep learning to achieve state-of-the-art performance. We propose to further extend this approach by using flexible time-space decompositions that are more in line with the actual learning task, as well as integrate side-information, such as higher order moments, directly into the training process. Our promising preliminary results suggest that there are many more benefits to be reaped from such approaches.
基于边信息和混合学习的调制识别
最近机器学习在调制识别中的应用已经证明了深度学习在实现最先进性能方面的潜力。我们建议进一步扩展这种方法,使用更符合实际学习任务的灵活的时空分解,以及将侧信息(如高阶矩)直接集成到训练过程中。我们有希望的初步结果表明,从这些方法中可以获得更多的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信