Automating News Comment Moderation with Limited Resources: Benchmarking in Croatian and Estonian

Ravi Shekhar, M. Pranjic, S. Pollak, Andraz Pelicon, Matthew Purver
{"title":"Automating News Comment Moderation with Limited Resources: Benchmarking in Croatian and Estonian","authors":"Ravi Shekhar, M. Pranjic, S. Pollak, Andraz Pelicon, Matthew Purver","doi":"10.21248/jlcl.34.2020.224","DOIUrl":null,"url":null,"abstract":"This article describes initial work into the automatic classification of user-generated content in news media to support human moderators. We work with real-world data — comments posted by readers under online news articles — in two less-resourced European languages, Croatian and Estonian. We describe our dataset, and experiments into automatic classification using a range of models. Performance obtained is reasonable but not as good as might be expected given similar work in offensive language classification in other languages; we then investigate possible reasons in terms of the variability and reliability of the data and its annotation.","PeriodicalId":137584,"journal":{"name":"Journal for Language Technology and Computational Linguistics","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for Language Technology and Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21248/jlcl.34.2020.224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This article describes initial work into the automatic classification of user-generated content in news media to support human moderators. We work with real-world data — comments posted by readers under online news articles — in two less-resourced European languages, Croatian and Estonian. We describe our dataset, and experiments into automatic classification using a range of models. Performance obtained is reasonable but not as good as might be expected given similar work in offensive language classification in other languages; we then investigate possible reasons in terms of the variability and reliability of the data and its annotation.
自动化新闻评论审核与有限的资源:在克罗地亚和爱沙尼亚的基准
本文描述了对新闻媒体中用户生成的内容进行自动分类以支持人工版主的初步工作。我们用两种资源较少的欧洲语言克罗地亚语和爱沙尼亚语处理现实世界的数据——读者在网上新闻文章下发表的评论。我们描述了我们的数据集,并使用一系列模型进行自动分类实验。在其他语言中进行类似的攻击性语言分类时,所获得的结果是合理的,但不如预期的那么好;然后,我们从数据及其注释的可变性和可靠性方面调查可能的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信