Asymmetrically Polarization-Dependent Terahertz Metamaterial Resonator

Z. Lin, Hao Luo, Yao Wen, Zhenwei Dai, Haolin Deng, Yu‐Sheng Lin, Zihao Liang, Pengyu Liu, Xiao Zhang, Zefeng Xu, Zhi Zhang, Zhuohang Li, T.-R. Chen, Ziyuan Luo
{"title":"Asymmetrically Polarization-Dependent Terahertz Metamaterial Resonator","authors":"Z. Lin, Hao Luo, Yao Wen, Zhenwei Dai, Haolin Deng, Yu‐Sheng Lin, Zihao Liang, Pengyu Liu, Xiao Zhang, Zefeng Xu, Zhi Zhang, Zhuohang Li, T.-R. Chen, Ziyuan Luo","doi":"10.1109/OMN.2019.8925233","DOIUrl":null,"url":null,"abstract":"A design of asymmetrically polarization-dependent Terahertz (THz) metamaterial resonator is presented There are three designs with different length of F-shape metamaterial, which are $60 \\mu m, 65 \\mu m, and 70 \\mu m$ kept other parameters as constant. The electromagnetic response of THz resonator exhibits the switch function for single-band resonance at transverse magnetic (TM) mode and dual-band resonance at transverse electric (TE) mode by changing the gap between F- shape metamaterials. These characterizations of device can be used for a THz filter at TM mode and a THz switch at TE mode. To compare the proposed device with and without a gap, that can be switched in the range of 0.20 THz to 0.40 THz for single-band switching resonance at TM mode and dual-band switching resonance at TE mode, respectively. These resonances have ultra-narrow bandwidths with a highest Q-factor of 41 at TE mode and 20 at TM mode. Such results are very suitable to be used for an environmental sensor. To enhance the flexibility of device, it is exposed on different surrounding environment with different refraction index. It shows the correlation coefficient is 0.9999 for high-efficiency environmental sensor application. This study paves away to the possibility of high-sensitivity of tunable THz metamaterial in filter, switch, polarizer, and other applications.","PeriodicalId":353010,"journal":{"name":"2019 International Conference on Optical MEMS and Nanophotonics (OMN)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Optical MEMS and Nanophotonics (OMN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OMN.2019.8925233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A design of asymmetrically polarization-dependent Terahertz (THz) metamaterial resonator is presented There are three designs with different length of F-shape metamaterial, which are $60 \mu m, 65 \mu m, and 70 \mu m$ kept other parameters as constant. The electromagnetic response of THz resonator exhibits the switch function for single-band resonance at transverse magnetic (TM) mode and dual-band resonance at transverse electric (TE) mode by changing the gap between F- shape metamaterials. These characterizations of device can be used for a THz filter at TM mode and a THz switch at TE mode. To compare the proposed device with and without a gap, that can be switched in the range of 0.20 THz to 0.40 THz for single-band switching resonance at TM mode and dual-band switching resonance at TE mode, respectively. These resonances have ultra-narrow bandwidths with a highest Q-factor of 41 at TE mode and 20 at TM mode. Such results are very suitable to be used for an environmental sensor. To enhance the flexibility of device, it is exposed on different surrounding environment with different refraction index. It shows the correlation coefficient is 0.9999 for high-efficiency environmental sensor application. This study paves away to the possibility of high-sensitivity of tunable THz metamaterial in filter, switch, polarizer, and other applications.
非对称极化相关太赫兹超材料谐振器
提出了一种不对称极化依赖太赫兹(THz)超材料谐振器的设计方案,在保持其他参数不变的情况下,f形超材料的长度分别为$60 μ m、$ 65 μ m和$ 70 μ m。太赫兹谐振腔的电磁响应通过改变F形超材料之间的间隙,表现出横向磁(TM)模式下的单频共振和横向电(TE)模式下的双频共振的切换功能。器件的这些特性可用于TM模式下的太赫兹滤波器和TE模式下的太赫兹开关。为了比较所提出的器件是否有间隙,可以在0.20 THz到0.40 THz范围内切换,分别用于TM模式下的单带开关谐振和TE模式下的双带开关谐振。这些共振具有超窄的带宽,在TE模式下q因子最高为41,在TM模式下为20。这样的结果非常适合用于环境传感器。为了增强器件的灵活性,它暴露在不同的周围环境中,并具有不同的折射率。结果表明,对于高效环境传感器的应用,相关系数为0.9999。本研究为可调谐太赫兹超材料在滤波器、开关、偏振器等领域的高灵敏度应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信