Super mario evolution

J. Togelius, S. Karakovskiy, J. Koutník, J. Schmidhuber
{"title":"Super mario evolution","authors":"J. Togelius, S. Karakovskiy, J. Koutník, J. Schmidhuber","doi":"10.1109/CIG.2009.5286481","DOIUrl":null,"url":null,"abstract":"We introduce a new reinforcement learning benchmark based on the classic platform game Super Mario Bros. The benchmark has a high-dimensional input space, and achieving a good score requires sophisticated and varied strategies. However, it has tunable difficulty, and at the lowest difficulty setting decent score can be achieved using rudimentary strategies and a small fraction of the input space. To investigate the properties of the benchmark, we evolve neural network-based controllers using different network architectures and input spaces. We show that it is relatively easy to learn basic strategies capable of clearing individual levels of low difficulty, but that these controllers have problems with generalization to unseen levels and with taking larger parts of the input space into account. A number of directions worth exploring for learning betterperforming strategies are discussed.","PeriodicalId":358795,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence and Games","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"110","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2009.5286481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 110

Abstract

We introduce a new reinforcement learning benchmark based on the classic platform game Super Mario Bros. The benchmark has a high-dimensional input space, and achieving a good score requires sophisticated and varied strategies. However, it has tunable difficulty, and at the lowest difficulty setting decent score can be achieved using rudimentary strategies and a small fraction of the input space. To investigate the properties of the benchmark, we evolve neural network-based controllers using different network architectures and input spaces. We show that it is relatively easy to learn basic strategies capable of clearing individual levels of low difficulty, but that these controllers have problems with generalization to unseen levels and with taking larger parts of the input space into account. A number of directions worth exploring for learning betterperforming strategies are discussed.
超级马里奥进化
我们基于经典平台游戏《超级马里奥兄弟》引入了一种新的强化学习基准,该基准具有高维输入空间,要获得好成绩需要复杂多样的策略。然而,它具有可调整的难度,并且在最低难度下设置体面的分数可以使用基本策略和一小部分输入空间来实现。为了研究基准的特性,我们使用不同的网络架构和输入空间来进化基于神经网络的控制器。我们表明,学习能够清除单个低难度关卡的基本策略相对容易,但这些控制器在对未知关卡的泛化以及考虑更大部分输入空间方面存在问题。讨论了一些值得探索的方向,以学习更好的执行策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信