Improving time-frequency sparsity for audio spatialization by time-adaptive windowing

P. Gaddipati, N. Dave, P. Rao, R. Velmurugan
{"title":"Improving time-frequency sparsity for audio spatialization by time-adaptive windowing","authors":"P. Gaddipati, N. Dave, P. Rao, R. Velmurugan","doi":"10.1109/NCC.2010.5430178","DOIUrl":null,"url":null,"abstract":"We propose a new time-adaptive windowing technique to obtain a sparse time-frequency representation for audio signals. This transformation helps in providing better source separation from stereo mixtures for improved subsequent spatial rendering over headphones. We start with standard stereo audio recordings, transform them to a sparse representation and then estimate the mixing parameters to be used for source separation. The performance of the new representation is compared with existing methods via the accuracy of mixing parameters estimation for a test dataset of multi-speaker stereo mixtures.","PeriodicalId":130953,"journal":{"name":"2010 National Conference On Communications (NCC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 National Conference On Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2010.5430178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a new time-adaptive windowing technique to obtain a sparse time-frequency representation for audio signals. This transformation helps in providing better source separation from stereo mixtures for improved subsequent spatial rendering over headphones. We start with standard stereo audio recordings, transform them to a sparse representation and then estimate the mixing parameters to be used for source separation. The performance of the new representation is compared with existing methods via the accuracy of mixing parameters estimation for a test dataset of multi-speaker stereo mixtures.
利用时间自适应窗提高音频空间化的时频稀疏性
我们提出了一种新的时间自适应加窗技术来获得音频信号的稀疏时频表示。这种转换有助于从立体声混合中提供更好的源分离,从而改善耳机上的后续空间渲染。我们从标准立体声录音开始,将它们转换为稀疏表示,然后估计用于源分离的混合参数。通过对多扬声器立体声混合测试数据集的混频参数估计精度与现有方法的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信