A hybrid Multi-valued neuron based network for the identification of lumped models

F. Grasso, A. Luchetta, S. Manetti, M. C. Piccirilli
{"title":"A hybrid Multi-valued neuron based network for the identification of lumped models","authors":"F. Grasso, A. Luchetta, S. Manetti, M. C. Piccirilli","doi":"10.1109/SM2ACD.2010.5672354","DOIUrl":null,"url":null,"abstract":"A novel identification technique for lumped models of general distributed circuits (i.e. microwave transmission lines, monolithic integrated circuits and filters) is presented. The approach is based on a hybrid neural network having based on Multi-valued neurons network with a modified layer and learning process, whose convergence allows the validation of the circuit approaximated lumped model. The modified layer is generated by symbolic analysis of the model under exam. The inputs of the network are geometrical parameters and the neural network output represents the lumped circuit parameter estimation.","PeriodicalId":442381,"journal":{"name":"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SM2ACD.2010.5672354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A novel identification technique for lumped models of general distributed circuits (i.e. microwave transmission lines, monolithic integrated circuits and filters) is presented. The approach is based on a hybrid neural network having based on Multi-valued neurons network with a modified layer and learning process, whose convergence allows the validation of the circuit approaximated lumped model. The modified layer is generated by symbolic analysis of the model under exam. The inputs of the network are geometrical parameters and the neural network output represents the lumped circuit parameter estimation.
一种基于混合多值神经元的集总模型识别网络
提出了一种新的通用分布电路(如微波传输线、单片集成电路和滤波器)集总模型识别技术。该方法基于基于多值神经元网络的混合神经网络,具有改进的层和学习过程,其收敛性允许电路逼近集总模型的验证。对待测模型进行符号分析,生成修改后的层。神经网络的输入是几何参数,神经网络的输出是集总电路参数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信