A Class of Descent Nonlinear Conjugate Gradient Methods

Tao Ying
{"title":"A Class of Descent Nonlinear Conjugate Gradient Methods","authors":"Tao Ying","doi":"10.1109/ICDMA.2013.4","DOIUrl":null,"url":null,"abstract":"This thesis further study descent conjugate gradient methods based on the modified FR method and the modified PRP method give the class of conjugate gradient methods formed by the convex combination of the MFR method and the MPRP method. This class of methods enjoys the same nice properties as those of the MFR method and the MPRP method. Firstly the methods generate sufficient descent directions for the objective function. This property is independent of the line search used. Secondly if exact line search is used, the methods possess quadratic termination property. Thirdly if Armijo type line search is used, then the methods are globally convergent when used to minimize a general nonconvex function. Finally, we do extensive numerical experiments to test the performance of the members in the class with different parameters. And then compare the performance of one of the method in the class with the MFR method and the MPRP method.","PeriodicalId":403312,"journal":{"name":"2013 Fourth International Conference on Digital Manufacturing & Automation","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth International Conference on Digital Manufacturing & Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMA.2013.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This thesis further study descent conjugate gradient methods based on the modified FR method and the modified PRP method give the class of conjugate gradient methods formed by the convex combination of the MFR method and the MPRP method. This class of methods enjoys the same nice properties as those of the MFR method and the MPRP method. Firstly the methods generate sufficient descent directions for the objective function. This property is independent of the line search used. Secondly if exact line search is used, the methods possess quadratic termination property. Thirdly if Armijo type line search is used, then the methods are globally convergent when used to minimize a general nonconvex function. Finally, we do extensive numerical experiments to test the performance of the members in the class with different parameters. And then compare the performance of one of the method in the class with the MFR method and the MPRP method.
一类下降非线性共轭梯度方法
本文在改进的FR方法和改进的PRP方法的基础上进一步研究了下降共轭梯度方法,给出了由MFR方法和MPRP方法的凸组合形成的一类共轭梯度方法。这类方法享有与MFR方法和MPRP方法相同的良好属性。该方法首先为目标函数生成足够的下降方向;此属性与所使用的行搜索无关。其次,当采用精确直线搜索时,该方法具有二次终止性。第三,如果使用Armijo型线搜索,则该方法在最小化一般非凸函数时是全局收敛的。最后,我们做了大量的数值实验来测试不同参数下类中成员的性能。然后将其中一种方法的性能与MFR方法和MPRP方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信